What best describes the result is a mixture
Matter is anything that has mass and occupies space, It can exist in 3 states, or phases: solid, liquid, and gas.
Solid molecules are closely packed together and retain a fixed shape.
Liquid molecules aren't packed very closely, and take the shape of the bottom of the container.
Gas molecules are far apart and fill the container
completely.
Answer:
5.0 × 10²⁴ molecules
Explanation:
Step 1: Write the balanced double displacement reaction
2 NaOH + CuSO₄ ⇒ Na₂SO₄ + Cu(OH)₂
Step 2: Calculate the moles corresponding to 5.0 × 10²⁴ molecules of Na₂SO₄
We will use Avogadro's number: there are 6.02 × 10²³ molecules in 1 mole of molecules.
5.0 × 10²⁴ molecule × 1 mol/6.02 × 10²³ molecule = 8.3 mol
Step 3: Calculate the moles of CuSO₄ required to produce 8.3 moles of Na₂SO₄
The molar ratio of CuSO₄ to Na₂SO₄ is 1:1. The moles of CuSO₄ required are 1/1 × 8.3 mol = 8.3 mol.
Step 4: Calculate the molecules corresponding to 8.3 moles of CuSO₄
We will use Avogadro's number.
8.3 mol × 6.02 × 10²³ molecule/1 mol = 5.0 × 10²⁴ molecule
Answer:
of 0.056 M HF solution is 
Explanation:
cM 0 0
So dissociation constant will be:
Give c= 0.056 M and
= ?
Putting in the values we get:
Thus
of 0.056 M HF solution is 
Answer: 4.21×10⁻⁸
Explanation:
1) Assume a general equation for the ionization of the weak acid:
Let HA be the weak acid, then the ionization equation is:
HA ⇄ H⁺ + A⁻
2) Then, the expression for the ionization constant is:
Ka = [H⁺][A⁻] / [HA]
There, [H⁺] = [A⁻], and [HA] = 0.150 M (data given)
3) So, you need to determine [H⁺] which you do from the pH.
By definition, pH = - log [H⁺]
And from the data given pH = 4.1
⇒ 4.10 = - log [H⁺] ⇒ [H⁺] = antilog (- 4.10) = 7.94×10⁻⁵
4) Now you have all the values to calculate the expression for Ka:
ka = 7.94×10⁻⁵ × 7.94×10⁻⁵ / 0.150 = 4.21×10⁻⁸