Answer:
Step-by-step explanation:
Answer:
gggcfbgcjun
Step-by-step explanation:
gmkknnzksksjxndncudhudbiejufnridmwjdiendysheixnddyhdbeudbeudne8djeudneudhebdjrn8fjr
<em>The</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>X </em><em>is</em><em> </em><em>9</em><em>2</em><em>.</em>
<em>pl</em><em>ease</em><em> </em><em>see</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> </em><em>for</em><em> </em><em>full</em><em> </em><em>solution</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em>
Answer:
is the required factorization of f(x).
Step-by-step explanation:
To factor the expression we must first group the terms and then take out common from these groups

Taking
common from first group and the 16 from second group we get:

Now, to factor in complex from we have to break term 

As, 
Also using identity 
On solving

is the required factorization of f(x).