The simulation of the medicine and the bowler hat are illustrations of probability
- The probability that the medicine is effective on at least two is 0.767
- The probability that the medicine is effective on none is 0
- The probability that the bowler hits a headpin 4 out of 5 times is 0.3281
<h3>The probability that the medicine is effective on at least two</h3>
From the question,
- Numbers 1 to 7 represents the medicine being effective
- 0, 8 and 9 represents the medicine not being effective
From the simulation, 23 of the 30 randomly generated numbers show that the medicine is effective on at least two
So, the probability is:
p = 23/30
p = 0.767
Hence, the probability that the medicine is effective on at least two is 0.767
<h3>The probability that the medicine is effective on none</h3>
From the simulation, 0 of the 30 randomly generated numbers show that the medicine is effective on none
So, the probability is:
p = 0/30
p = 0
Hence, the probability that the medicine is effective on none is 0
<h3>The probability a bowler hits a headpin</h3>
The probability of hitting a headpin is:
p = 90%
The probability a bowler hits a headpin 4 out of 5 times is:
P(x) = nCx * p^x * (1 - p)^(n - x)
So, we have:
P(4) = 5C4 * (90%)^4 * (1 - 90%)^1
P(4) = 0.3281
Hence, the probability that the bowler hits a headpin 4 out of 5 times is 0.3281
Read more about probabilities at:
brainly.com/question/25870256
<span>3x + y = 9 (I)
</span><span>y = –4x + 10 (II)
------------------------
</span>

Pass the incognito "4x" to the first term, changing the signal when changing sides.
<span>-------------------------
simplify by (-1)
</span>

<span>
-------------------------
</span>

<span>
-------------------------
</span>

<span>
-----------
</span>

<span><span>
</span></span><span>Substitute in equation (I) to find the value of "Y".
</span>3x + y = 9 (I)
3*(1) + y = 9
3 + y = 9
y = 9 - 3

Answer:

Answer:
1 cm : 2m
1 cm = 2m
118m
Step-by-step explanation:
A scale drawing is a reduced form in terms of dimensions of an original image / building / object
the scale drawing is usually reduced at a constant dimension
scale of the drawing = original dimensions / dimensions of the scale drawing
18 / 9 = 2 : 1
59 x 2 = 118
I estimated it is around or near 360