1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AveGali [126]
3 years ago
5

PLZ HELP ASAPPP!! I'M NOT 100% SURE ON HOW TO DO THIS

Mathematics
2 answers:
Allushta [10]3 years ago
8 0

Answer:

1) 4a + 8

2) 12a² - 8a

3) 2a² + 8a

4) 4 - 6a

Step-by-step explanation:

The GCF of two numbers is the greatest common number each of the original two numbers can be divided by to get a whole number.

Hope it helps <3

Firlakuza [10]3 years ago
6 0

Answer:

4     4a+8

4a   12a^{2}+8a

2a   2a^{2} +8a

2     4-6a

Step-by-step explanation:

Okay basicly you wand to find the biggest number that can go into both numbers

like the greatest common fact for 4a+8 would be 4 since only one of the numbers have an a you would just leave that out

Since you can take a 4 and an a out of 12a^{2} \\ and out of 8a the greatest common factor would be 4a

Since you are able to take a 2 and an a out of 2a^{2} +8a your greatest common factor would be a

Since the largest number that can go into 4 and 6 is 2 your answer would be 2

Hope this helps you understand!

You might be interested in
Help me with 2, 8, and 10 plz
OverLord2011 [107]

For #2:

<span> 3x^2 + 4 – 2x^2 + 6</span>

<span><span>You need to combine your like terms:
</span> 3x^2 – 2x^2= x^2</span>

4 + 6 = 10

This will now give you:

<span>X^2 +10</span>
3 0
3 years ago
Sin4x.sin5x+sin4x.sin3x-sin2x.sinx=0
andreev551 [17]

Recall the angle sum identity for cosine:

cos(<em>x</em> + <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)

cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) + sin(<em>x</em>) sin(<em>y</em>)

==>   sin(<em>x</em>) sin(<em>y</em>) = 1/2 (cos(<em>x</em> - <em>y</em>) - cos(<em>x</em> + <em>y</em>))

Then rewrite the equation as

sin(4<em>x</em>) sin(5<em>x</em>) + sin(4<em>x</em>) sin(3<em>x</em>) - sin(2<em>x</em>) sin(<em>x</em>) = 0

1/2 (cos(-<em>x</em>) - cos(9<em>x</em>)) + 1/2 (cos(<em>x</em>) - cos(7<em>x</em>)) - 1/2 (cos(<em>x</em>) - cos(3<em>x</em>)) = 0

1/2 (cos(9<em>x</em>) - cos(<em>x</em>)) + 1/2 (cos(7<em>x</em>) - cos(3<em>x</em>)) = 0

sin(5<em>x</em>) sin(-4<em>x</em>) + sin(5<em>x</em>) sin(-2<em>x</em>) = 0

-sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

Recall the double angle identity for sine:

sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)

Rewrite the equation again as

sin(5<em>x</em>) (2 sin(2<em>x</em>) cos(2<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) sin(2<em>x</em>) (2 cos(2<em>x</em>) + 1) = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   2 cos(2<em>x</em>) + 1 = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   cos(2<em>x</em>) = -1/2

sin(5<em>x</em>) = 0   ==>   5<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   5<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   5<em>x</em> = 2<em>nπ</em>   <u>or</u>   5<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = 2<em>nπ</em>/5   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/5

sin(2<em>x</em>) = 0   ==>   2<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   2<em>x</em> = 2<em>nπ</em>   <u>or</u>   2<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = <em>nπ</em>   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/2

cos(2<em>x</em>) = -1/2   ==>   2<em>x</em> = arccos(-1/2) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -arccos(-1/2) + 2<em>nπ</em>

… … … … … …    ==>   2<em>x</em> = 2<em>π</em>/3 + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -2<em>π</em>/3 + 2<em>nπ</em>

… … … … … …    ==>   <em>x</em> = <em>π</em>/3 + <em>nπ</em>   <u>or</u>   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

<em />

(where <em>n</em> is any integer)

5 0
3 years ago
An automotive repair center charges $45 for any part of the first hour of labor, and $25 for any part of each additional hour. W
IceJOKER [234]
The total cost is given by the equation:
C(t) = 45 + 25(h-1) where h is the number of hours worked.

We can check for each option in turn:

Option A:

Inequality 5 < x ≤ 6 means the hour is between 5 hours (not inclusive) to 6 hours (inclusive)
Let's take the number of hours = 5
C(5) = 45 + (5-1)×25 = 145
Let's take the number of hours = 6
Then substitute into C(6) = 45 + (6-1)×25 = 170
We can't take 145 because the value '5' was not inclusive.


Option B:
The inequality is 6 < x ≤ 7
We take number of hours = 6
C(6) = 25(6-1) + 45 = 170
We take number of hours = 7
Then C(7) = 25(7-1) + 45 = 195

Option C:
The inequality is 5 < x ≤ 6
Take the number of hours = 5
C(5) = 25(5-1) + 45 = 145
Take the number of hours = 6
C(6) = 25(6-1) + 45 = 170
We can't take the value 145 as '5' was not inclusive in the range, but we can take 170

Option D:
6 < x ≤ 7
25(6-1) + 45 < C(t) ≤ 25(7-1) + 45
170 < C(t) ≤ 195

Correct answer: C


7 0
3 years ago
Which set of values could be the side lengths of a 30-60-90 triangle?
PilotLPTM [1.2K]

The correct answer is option B which is the set of values that could be the side lengths of a 30-60-90 triangle are (6,6√3, 12).

<h3>What is the right-angled triangle?</h3>

A triangle has three angles of 30-60 and 90 degrees in which the two sides are perpendicular to each other.

The three sides of the triangle will be calculated by applying the Pythagorean theorem:-

The sum of the square sides will be equal to the square of the third side.

For sides  (6,6√3, 12)

12² = 6² + (6√3)²

144 = 36 + (36 x 3)

144 = 36 + 108

144 = 144

Therefore the correct answer is option B which is the set of values that could be the side lengths of a 30-60-90 triangle (6,6√3, 12).

To know more about right angle follow

brainly.com/question/64787

#SPJ1

5 0
2 years ago
Which graph shows the solution set of x^2+4x-12/x 0
kupik [55]
As shown in the figure below the answer is the last option:

(-6, 0) \cup (2, +\infty)

The roots of the polynomial in the denominator are:

x_{1}=-6
x_{2}=2

So, the inequality can be written as follows:

\frac{(x-2)(x+6)}{x}\ \textgreater \ 0

From this inequality we can study the signs and get the same conclusion just as shows the graph.



6 0
3 years ago
Read 2 more answers
Other questions:
  • 7a+(8b) +(-15a)+9b + (-4c)+8=
    11·2 answers
  • Which expression is equal to 4 x 3 x 5?
    11·2 answers
  • A random walker is observed to take a total of N steps, n of which are to the right (and the rest n^' are to the left). Suppose
    9·1 answer
  • If F(x)=9x which of the following is the inverse of F(x)
    15·2 answers
  • X^2+y^2-4y-15=6
    14·1 answer
  • 5/6 x 48<br><br><br> You get 25 point if you answer
    11·1 answer
  • HELP! What is the volume in cubic inches of the solid figure, rounded to the nearest cubic inch?
    11·1 answer
  • To investigate the relationship between age and preference for two mayoral candidates in an upcoming election, a random sample o
    6·1 answer
  • Find the Product:<br> 0.2 x 0.3
    9·2 answers
  • The length of a rectangular garden is 20 feet and the width is 15 feet. What is ratio of length to width?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!