Answer:

Step-by-step explanation:
If we solve for 'x' variable, its recommended to multiply 'x' variable in both sides of inequality:
we have 
This is a quadratic equation, two answer are going to be obtained from here.
since 
Applying square roots to both sides of inequality sign we wil have the following

This leaves to the following

remember that 
so

Try seperating the triangle and rectangle
Vamos lá.
<span>Pede-se para determinar o parâmetro "m" da equação abaixo, sabendo-se que uma raiz é nula e a outra é positiva: </span>
<span>x² + mx + m² - m - 12 = 0 </span>
<span>Veja que se uma raiz é nula (é igual a zero), então vamos substituir o "x" por "0", na equação acima: </span>
<span>0² + m*0 + m² - m - 12 = 0 </span>
<span>0 + 0 + m² - m - 12 = 0 </span>
<span>m² - m - 12 = 0 ------resolvendo essa equação do 2º grau você encontrará as seguintes raízes: </span>
<span>m' = -3 </span>
<span>m'' = 4 </span>
<span>Dessa forma, vamos substituir "m" por (-3) e por 4 e ver se a equação terá uma raiz nula e outra positiva. Vamos ver? </span>
<span>Substituindo "m" por "-3", ficamos com: </span>
<span>x² - 3x + (-3)² - (-3) - 12 = 0 </span>
<span>x² - 3x + 9 + 3 - 12 = 0 </span>
<span>x² - 3x +12 - 12 = 0 </span>
<span>x² - 3x = 0 <------Veja que as raízes dessa equação são: x' = 0 e x'' = 3 </span>
<span>Veja que para m = -3, a equação se verifica, pois temos uma raiz igual a "0" e a outra positiva (igual a 3). </span>
<span>Agora vamos substituir "m" por 4 na equação original: </span>
<span>x² + 4x + 4² - 4 - 12 = 0 </span>
<span>x² + 4x + 16 - 16 = 0 </span>
<span>x² + 4x = 0 <----- Veja que as raízes dessa equação são: x' = 0 e x'' = -4. </span>
<span>Observe que, para m = 4, a equação NÃO se verifica, pois temos uma raiz igual a "0" e a outra negativa (igual a -4). E no enunciado é informado que uma raiz deverá ser nula e a outra positiva. Como deu uma nula e a outra negativa, então m = 4 não convém. </span>
<span>Logo, o valor de "m" deverá ser: </span>
<span>m = -3 <----Pronto. Essa é a resposta. </span>