Transport of a substance from the lumen (cavity) of an organ into one side of a cell and out the other side of the cell into the extracellular fluid is called <u>transcellular transport</u>.
The two routes of transport of substances across the epithelium of the gut are by transcellular method and paracellular method.
Transcellular transport refers to the transport of solutes across a epithelial cell layer through the cells. The best example is the movement of glucose from the intestinal lumen to the extracellular fluid by the epithelial cells. The epithelial cells use the active transport to generate the transcellular transport. Active transport refers to the transport of substances from a region of its lower concentration to a region of its higher concentration against the concentration gradient using cellular energy.
Answer:
it means they are more powerful than most of the prey or other predators in the habitat and they have a more succession of catching prey, they eat first.
Explanation:
Muscle spasms is the answer i belive because you dont have the control
Answer:
For both actin and microtubule polymerization, nucleotide hydrolysis is important for decreasing the binding strength between subunits on filaments.
Explanation:
Cytoskeletal filaments are common to eucaryotic cells and are impotartant to the spatial organization of cells. Intermediate filaments provide mechanical strength and resistance to shear stress. Microtubules determine the positions of membrane-enclosed organelles and direct intracellular transport. Actin filaments determine the shape of the cell's surface and are necessary for whole-cell locomotion. A large number of accessory proteins are present that link the filaments to other cell components, as well as to each other. Accessory proteins are essential for the assembly of the cytoskeletal filaments in particular locations, and it includes the motor proteins that either move organelles along the filaments or move the filaments themselves.
Actin filaments and microtubules are assembled with expenditure of energy i.e the ATP/GTP tightly bound to actin/tubulin is irreversibly hydrolyzed to ADP/GTP during the assembly process, and liberation of Pi in the medium occurs subsequent to the incorporation of subunits in the polymer. Pi release acts as a switch, causing the destabilization of protein-protein interactions in the polymer, therefore regulating the dynamics of these fibres. The progress is made in four areas: the chemistry of the NTPase reaction; the structure of the intermediates in nucleotide hydrolysis and the nature of the conformational switch; the regulation of parameters involved in dynamic instability of microtubules; and the possible involvement of nucleotide hydrolysis in the macroscopic organization of these polymers in highly concentrated solutions, compared with the simple case of a equilibrium polymers.