Q1. The answer is x = 1, y = 1, z = 0
<span>(i) -2x+2y+3z=0
</span><span>(ii) -2x-y+z=-3
</span>(iii) <span>2x+3y+3z=5
</span><span>_________
Sum up the first and the third equation:
</span>(i) -2x+2y+3z=0
(iii) 2x+3y+3z=5
_________
5y + 6z = 5
Sum up the second and the third equation:
(ii) -2x-y+z=-3
(iii) 2x+3y+3z=5
_________
2y + 4z = 2
(iv) 5y + 6z = 5
(v) 2y + 4z = 2
________
Divide the fifth equation by 2
(iv) 5y + 6z = 5
(v) y + 2z = 1
________
Multiple the second equation by -3 and sum the equation
(iv) 5y + 6z = 5
(v) -3y - 6z = -3
________
2y = 2
y = 2/2 = 1
y + 2z = 1
1 + 2z = 1
2z = 1 - 1
2z = 0
z = 0
-2x-y+z=-3
-2x - 1 + 0 = -3
-2x = -3 + 1
-2x = -2
x = -2/-2 = 1
Q2. The answer is x = -37, y = -84, z = -35
<span>(i) x-y-z=-8
(ii) -4x+4y+5z=7
(iii) 2x+2z=4
______
</span>Divide the third equation by 2 and rewrite z in the term of x:
(iii) x+z=2
z = 2 - x
______
Substitute z from the third equation and express y in the term of x:
<span>x-y-(2-x)=-8
x - y - 2 + x = 8
2x - y = 10
y = 2x - 10
______
Substitute z from the third equation and y from the first equation into the second equation:
</span><span>-4x + 4y + 5z = 7
-4x + 4(2x - 10) + 5(2 - x) = 7
-4x + 8x - 40 + 10 - 5x = 7
-x -30 = 7
-x = 30 + 7
x = -37
y = 2x - 10 = 2*(-37) - 10 = -74 - 10 = -84
z = 2 - x = 2 - 37 = -35</span>
Answer:
x = 3
Step-by-step explanation:
7(x + 1) + 2 = 5x + 15
~Simplify left side
7x + 7 + 2 = 5x + 15
~Combine like terms
7x + 9 = 5x + 15
~Subtract 9 to both sides
7x = 5x + 6
~Subtract 5x to both sides
2x = 6
~Divide 2 to both sides
x = 3
Best of Luck!
Answer: 
Step-by-step explanation:
The missing figure is attached.
The volume of an oblique cylinders and the volume of a right cylinder can be found with this formula:
Where "r" is the radius and "h" is the height.
The volume of an oblique cone and the volume of a right cone can be found with this formula:
Where "r" is the radius and "h" is the height.
According to the information given in the exercise, you know that the volume of the cylinder and also the radius of the cylinder and the cone ,are the following:

Therefore, in order to find the volume of the cone, you only need to multiply the volume of the cylinder by
.
Then, you get:

Answer:
(1, 3)
Step-by-step explanation:
You are given the h coordinate of the vertex as 1, but in order to find the k coordinate, you have to complete the square on the parabola. The first few steps are as follows. Set the parabola equal to 0 so you can solve for the vertex. Separate the x terms from the constant by moving the constant to the other side of the equals sign. The coefficient HAS to be a +1 (ours is a -2 so we have to factor it out). Let's start there. The first 2 steps result in this polynomial:
. Now we factor out the -2:
. Now we complete the square. This process is to take half the linear term, square it, and add it to both sides. Our linear term is 2x. Half of 2 is 1, and 1 squared is 1. We add 1 into the set of parenthesis. But we actually added into the parenthesis is +1(-2). The -2 out front is a multiplier and we cannot ignore it. Adding in to both sides looks like this:
. Simplifying gives us this:

On the left we have created a perfect square binomial which reflects the h coordinate of the vertex. Stating this binomial and moving the -3 over by addition and setting the polynomial equal to y:

From this form,

you can determine the coordinates of the vertex to be (1, 3)