Answer:
The answer is - Although their cell structures are very different, archaean and eukaryotic cells are more closely related to each other than to bacteria, as evidenced by the fact that Bacteria was the first domain to split from the shared ancestor of Archaea and Eukarya.
Explanation:
The options are:
A. Bacterial and eukaryotic cells are more closely related to each other than to archaeans, as evidenced by the fact that bacteria and eukaryotes do not inhabit the most extreme environments.
B. Although their cell structures are very different, archaean and eukaryotic cells are more closely related to each other than to bacteria, as evidenced by the fact that Bacteria was the first domain to split from the shared ancestor of Archaea and Eukarya.
C. Bacteria and archaeans are more closely related to each other than to eukaryotes, as evidenced by their cell structures. Bacteria and archaeans are prokaryotic, while all eukaryotic cells contain mitochondria and other membrane-bound organelles.
D. The three domains of life are equally divergent from one another, so no two domains are more closely related to each other. This is supported by the evolutionary tree of life because three branches extend from one node millions of years ago.
The answer is - B. Although their cell structures are very different, archaean and eukaryotic cells are more closely related to each other than to bacteria, as evidenced by the fact that Bacteria was the first domain to split from the shared ancestor of Archaea and Eukarya.
Archaea and bacteria are similar in terms of cellular organisation and size but are however similar to eukaryotes (eukarya) at the molecular level. Archaea and Eukaryotes both undergo DNA replication and protein synthesis the same mechanism. Both of them posses closely related genes and several metabolic pathways, including the enzymes in transcription and translation.
Answer:
None of those, its called Soul Horizons
Explanation:
arbon, as with many elements, can arrange its atoms into several different geometries, or "allotropes." In pure diamond, every carbon atom is covalently bonded to exactly 4 other carbon atoms in a very specific and energetically favorable geometry. The diamond cannot be broken or scratched unless many covalent bonds are broken, which is difficult to do. In another common allotrope, graphite, every carbon atom is covalently bonded to only 3 other carbon atoms, and the atoms are arranged in sheets that are not covalently bonded to each other. The sheets can be broken apart easily, ultimately meaning that graphite can be easily scratched. Coal is composed of particles of different allotropes of carbon, and some "amorphous carbon," which has no defined geometry in its atomic structure. Without a continuous network of covalent bonds, coal is easily scratched (i.e. it is not hard).
It is apart of cellular DNA an ATP, and is a major component of bones and teeth, it is often only available in limited quantities in the the environment.
If you are referring to selection pressure, when the selection pressure decreases, there will be weaker forces of natural selection. The angler fishes without the favourable traits would not be that strongly selected against and vice versa. In some cases such as predation selection pressure, the population of angler fishes in the habitat may increase