Answer:
The length side of the original square banner was 9 ft
Step-by-step explanation:
Let
x-----> the length side of the original square banner
we know that
The new area of the banner is equal to
Solve for x
Solve the quadratic equation by graphing
The solution is x=9 ft
see the attached figure
Since we have two possible pieces of information and 2 items to solve for, we know this is a system of equations.
Our first piece of information is that our shorter leg (s) is 2 feet shorter than our longer leg (l). This can be written as s=l-2.
Our second piece of information is that using the Pythagorean theorem that our shorter leg squared plus our longer leg squared is equal to our hypotenuse squared. This can be represented by s^2+l^2=10^2. Now we can solve.
We have already isolated for s in our first equation, so we can substitute l-2 in.
(l-2)^2+l^2=10^2
l-2+l=10
2l-2=10
2l=12
l=6
Now we can substitute in for s in our simpler equation
s=6-2
s=4
We now know that using our knowledge of systems of equations, the side lengths of this right angle triangle are 6 and 4.
As they are similar corresponding sides are in the same ratio, so
18/15 = x / 4
x = 4*18 / 15
x = 4.8 answer
Insufficient data..u need to give the perimeter though!