1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
baherus [9]
4 years ago
8

How do i solve this?

Mathematics
1 answer:
Law Incorporation [45]4 years ago
4 0

Answer:

\large\boxed{x

Step-by-step explanation:

-\dfrac{1}{2}x+\dfrac{1}{3}>\dfrac{3}{5}\\\\\text{Find common denominator of the fractions}\\\\2,\ 3,\ 5\to2\cdot3\cdot5=30\\\\-\dfrac{1}{2}x+\dfrac{1}{3}>\dfrac{3}{5}\qquad\text{multiply both sides by 30}\\\\30\!\!\!\!\!\diagup^{15}\left(-\dfrac{1}{2\!\!\!\!\diagup_1}x\right)+30\!\!\!\!\!\diagup^{10}\left(\dfrac{1}{3\!\!\!\!\diagup_1}\right)>30\!\!\!\!\!\diagup^{6}\left(\dfrac{3}{5\!\!\!\!\diagup_1}\right)\\\\-15x+10>(6)(3)\\\\-15x+10>18\qquad\text{subtract 10 from both sides}

-15x>8\qquad\text{change the signs}\\\\15x

You might be interested in
Solve using square roots 3x^2+25=73
seropon [69]
Heya !

Given expression -

3 {x}^{2} + 25 = 73

Subtracting 25 both sides ,

3 {x}^{2} + 25 - 25 = 73 - 25 \\ \\ 3 {x}^{2} = 48

Dividing by 3 on both sides ,

\frac{3 {x}^{2} }{3} = \frac{48}{3} \\ \\ {x}^{2} = 16

Therefore ,
x = + \: 4 \: \: \: \: or \: \: - 4 \: \: \: \: \: \: \: Ans.
4 0
4 years ago
Write an equation of the line passing through the points ​(4​,11​) and ​(−1​,−14​).
krek1111 [17]

Answer:

y=5x-9

Step-by-step explanation:

7 0
3 years ago
Thomas is in charge of selling roses for the Graduation dance. The roses sell for $3.50 each. He estimates that the expenses of
KonstantinChe [14]

Answer:

P= $3.5x -$30

Step-by-step explanation:

Let the number of roses Thomas bought and sold be x.

Hence the total selling price would be;

$3.5 × x= $3.5x

The profit = selling price-expenses

P= $3.5x -$30

6 0
4 years ago
Create sample spaces for a Rhino, Elephant, and Lion. create all as possible.<br> HELP!!!
Mekhanik [1.2K]
There are 6 possibilities.
Rhino, elephant, lion
rhino, lion, elephant
elephant, lion, rhino
elephant, rhino, lion
Lion, rhino, elephant
lion, elephant, rhino
3 0
3 years ago
Compute the sum:
Nady [450]
You could use perturbation method to calculate this sum. Let's start from:

S_n=\sum\limits_{k=0}^nk!\\\\\\\(1)\qquad\boxed{S_{n+1}=S_n+(n+1)!}

On the other hand, we have:

S_{n+1}=\sum\limits_{k=0}^{n+1}k!=0!+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=0}^{n}(k+1)!=\\\\\\=1+\sum\limits_{k=0}^{n}k!(k+1)=1+\sum\limits_{k=0}^{n}(k\cdot k!+k!)=1+\sum\limits_{k=0}^{n}k\cdot k!+\sum\limits_{k=0}^{n}k!\\\\\\(2)\qquad \boxed{S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n}

So from (1) and (2) we have:

\begin{cases}S_{n+1}=S_n+(n+1)!\\\\S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\end{cases}\\\\\\&#10;S_n+(n+1)!=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\\\\\\&#10;(\star)\qquad\boxed{\sum\limits_{k=0}^{n}k\cdot k!=(n+1)!-1}

Now, let's try to calculate sum \sum\limits_{k=0}^{n}k\cdot k!, but this time we use perturbation method.

S_n=\sum\limits_{k=0}^nk\cdot k!\\\\\\&#10;\boxed{S_{n+1}=S_n+(n+1)(n+1)!}\\\\\\&#10;

but:

S_{n+1}=\sum\limits_{k=0}^{n+1}k\cdot k!=0\cdot0!+\sum\limits_{k=1}^{n+1}k\cdot k!=0+\sum\limits_{k=0}^{n}(k+1)(k+1)!=\\\\\\=&#10;\sum\limits_{k=0}^{n}(k+1)(k+1)k!=\sum\limits_{k=0}^{n}(k^2+2k+1)k!=\\\\\\=&#10;\sum\limits_{k=0}^{n}\left[(k^2+1)k!+2k\cdot k!\right]=\sum\limits_{k=0}^{n}(k^2+1)k!+\sum\limits_{k=0}^n2k\cdot k!=\\\\\\=\sum\limits_{k=0}^{n}(k^2+1)k!+2\sum\limits_{k=0}^nk\cdot k!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\&#10;\boxed{S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n}

When we join both equation there will be:

\begin{cases}S_{n+1}=S_n+(n+1)(n+1)!\\\\S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\end{cases}\\\\\\&#10;S_n+(n+1)(n+1)!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\\\&#10;\sum\limits_{k=0}^{n}(k^2+1)k!=S_n-2S_n+(n+1)(n+1)!=(n+1)(n+1)!-S_n=\\\\\\=&#10;(n+1)(n+1)!-\sum\limits_{k=0}^nk\cdot k!\stackrel{(\star)}{=}(n+1)(n+1)!-[(n+1)!-1]=\\\\\\=(n+1)(n+1)!-(n+1)!+1=(n+1)!\cdot[n+1-1]+1=\\\\\\=&#10;n(n+1)!+1

So the answer is:

\boxed{\sum\limits_{k=0}^{n}(1+k^2)k!=n(n+1)!+1}

Sorry for my bad english, but i hope it won't be a big problem :)
8 0
4 years ago
Other questions:
  • A store is offering a 20% discount on all sales over $50. If you purchase a shirt and a pair of jeans for $62.50, what is the am
    12·2 answers
  • A grocery store sells 17 pails of avocados for a total of $85. Each pail
    15·2 answers
  • Whats the expontial form for 81
    15·1 answer
  • pam wants to put a banner across her garage door to congratulate her son on his college graduation. Her garage door is 15ft high
    9·2 answers
  • What is (0,-2) a solution of 2x-4y=-8
    9·1 answer
  • A- 19<br> b-37<br> c-58<br> d-24
    15·1 answer
  • Hey could you please help me with this maths question thank you
    15·1 answer
  • twice a number,n, subtracted form 36 is less than 15 more than one third the number. Find all possible values for the number. SH
    15·1 answer
  • Original price of a kitten: $145.00<br> Discount: 11%<br> What is the selling price
    10·1 answer
  • What is the largest factor that can be identified in the fraction 102/150
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!