Answer : The dissociation constant of the PFK‑inhibitor complex is, 5 µM
Explanation :
The expression for reversible competitive inhibition when apparent Km affected by addition of the inhibitor is:
![K_m_a=K_m[1+\frac{I}{K_i}]](https://tex.z-dn.net/?f=K_m_a%3DK_m%5B1%2B%5Cfrac%7BI%7D%7BK_i%7D%5D)
where,
= apparent value = 52 µM
= Michaelis–Menten constant = 40 µM
I = inhibitor concentration = 1.5 µM
= dissociation constant of the PFK‑inhibitor complex
Now put all the given values in the above formula, we get:
![52\mu M=40\mu M[1+\frac{1.5\mu M}{K_i}]](https://tex.z-dn.net/?f=52%5Cmu%20M%3D40%5Cmu%20M%5B1%2B%5Cfrac%7B1.5%5Cmu%20M%7D%7BK_i%7D%5D)

Therefore, the dissociation constant of the PFK‑inhibitor complex is, 5 µM
In the context of protein digestion, protein breakdown into its amino acid constituents is completed by <u>proteases </u><u>produced in the small intestine</u>
<u />
- Protein-degrading enzymes are referred to as proteases. These enzymes are produced by bacteria, fungus, plants, and mammals.
- Proteins in the body or on the skin are broken down by proteolytic enzymes.
- This may aid in digestion or the breakdown of proteins that contribute to inflammation and pain.
- The small intestine, pancreas, and stomach all manufacture protease.
- The stomach and small intestine are where the majority of chemical reactions take place.
- Pepsin is the primary digestive enzyme that targets proteins in the stomach.
- Proteases are released by the pancreas into the proximal small intestine, where they combine with proteins that have already been altered by gastric secretions and break them down into amino acids, which are then absorbed and utilized by the body as necessary.
learn more about proteases here:
brainly.com/question/24155941
#SPJ4
<u />
omg... that's really hard and i don't know what the answer is.
Explanation:
by the way, thanks for points
Answer:
Explanation:
The genotype is recessive time=1/4 of the offsprings have white flowers!