So i did 220 ÷ 8 and got 27.5 then multiplied by 5 to find how many miles and its 137.5
Answer:
Step-by-step explanation:
h = -6
+20t + 4
I will use calculus, maybe that's not how you're supposed to do this
-12t +20 =0
12t = 20
t = 20 /12
t = 1 
t = 1 
there will be a max at 1.6666666666 seconds
-6*
+ 20 * 1.6666666666 +4
= 16.666666666666 + 33.333333333333 + 4
= - 16
+ 33
+ 4
= 20
feet max height ( not too high, for a rocket)
time of flight:
0 = -6
+20t + 4
use quadratic formula to find t
-20 +- sqrt [
- 4*(-6)*4 ] / 2*(-6)
-20 +- sqrt [400 + 96 ] / -12
-20 +- sqrt [496 ] / -12
-20 +- 22.27105 / -12
try the negative option 1st
-42.27105 / -12
3.522 seconds. time of flight
when will the rocket be at 12' ? :
12 = -6
+20t + 4
0 = -6
+20t -8
use quadratic formula again to find t
-20 +- sqrt [
- 4*(-6)*(-8) ] / 2*(-6)
-20 +- sqrt [ 400 - 192 ] / -12
-20 +- sqrt [208 ] / -12
-20 - 14.4222 / -12
-34.4222 / -12
2.8685 seconds ( on the way down)
and
-20 + 14.4222 / -12
-5.578 / - 12
0.4648 seconds ( on the way up )
Answer:
6283 in³
Step-by-step explanation:
The largest sphere that can fit into the cardboard box must have its diameter, d equal to the length, L of the cardboard box.
Since the cardboard box is in the shape of a cube, its volume V = L³
So, L = ∛V
Since V = 12000 in³,
L = ∛(12000 in³)
L= 22.89 in
So, the volume of the sphere, V' = 4πr³/3 where r = radius of cube = L/2
So, V = 4π(L/2)³/3
= 4πL³/8 × 3
= πL³/2 × 3
= πL³/6
= πV/6
= π12000/6
= 2000π
= 6283.19 in³
≅ 6283.2 in³
= 6283 in³ to the nearest whole cubic inch
Answer:
$11,983
Step-by-step explanation:
YEAR;Amount
0 $5,000
1 $5,300
2 $5,618
3 $5,955
4 $6,312
5 $6,691
6 $7,093
7 $7,518
8 $7,969
9 $8,447
10 $8,954
11 $9,491
12 $10,061
13 $10,665
14 $11,305
15 $11,983