Answer:
The frictional torque is ![\tau = 0.2505 \ N \cdot m](https://tex.z-dn.net/?f=%5Ctau%20%20%3D%200.2505%20%5C%20N%20%5Ccdot%20m)
Explanation:
From the question we are told that
The mass attached to one end the string is ![m_1 = 0.341 \ kg](https://tex.z-dn.net/?f=m_1%20%3D%20%200.341%20%5C%20kg)
The mass attached to the other end of the string is ![m_2 = 0.625 \ kg](https://tex.z-dn.net/?f=m_2%20%3D%20%200.625%20%5C%20kg)
The radius of the disk is ![r = 9.00 \ cm = 0.09 \ m](https://tex.z-dn.net/?f=r%20%3D%209.00%20%5C%20cm%20%20%3D%200.09%20%5C%20m)
At equilibrium the tension on the string due to the first mass is mathematically represented as
![T_1 = m_1 * g](https://tex.z-dn.net/?f=T_1%20%3D%20%20m_1%20%2A%20%20g)
substituting values
![T_1 = 0.341 * 9.8](https://tex.z-dn.net/?f=T_1%20%3D%20%200.341%20%2A%209.8)
![T_1 = 3.342 \ N](https://tex.z-dn.net/?f=T_1%20%3D%20%203.342%20%5C%20N)
At equilibrium the tension on the string due to the mass is mathematically represented as
![T_2 = m_2 * g](https://tex.z-dn.net/?f=T_2%20%3D%20%20m_2%20%2A%20%20g)
![T_2 = 0.625 * 9.8](https://tex.z-dn.net/?f=T_2%20%3D%200.625%20%2A%209.8)
![T_2 = 6.125 \ N](https://tex.z-dn.net/?f=T_2%20%3D%206.125%20%5C%20N)
The frictional torque that must be exerted is mathematically represented as
![\tau = (T_2 * r ) - (T_1 * r )](https://tex.z-dn.net/?f=%5Ctau%20%20%3D%20%20%28T_2%20%2A%20r%20%29%20-%20%28T_1%20%2A%20r%20%29)
substituting values
![\tau = ( 6.125 * 0.09 ) - (3.342 * 0.09 )](https://tex.z-dn.net/?f=%5Ctau%20%20%3D%20%20%28%206.125%20%2A%200.09%20%29%20-%20%283.342%20%20%2A%200.09%20%29)
![\tau = 0.2505 \ N \cdot m](https://tex.z-dn.net/?f=%5Ctau%20%20%3D%200.2505%20%5C%20N%20%5Ccdot%20m)
Answer:
The answer to your question is
Explanation:
Data
mass = 0.5kg
T1 = 35
T2 = ?
Q = - 6.3 x 10⁴ J = - 63000 J
Cp = 4184 J / kg°C
Formula
Q = mCp(T2 - T1)
T2 = T1 + Q/mCp
Substitution
T2 = 35 - 63000/(0.5 x 4184)
T2 = 35 - 63000/2092
T2 = 35 - 30.1
T2 = 4.9 °C
A billiard ball collides with a stationary identical billiard ball to make it move. If the collision is perfectly elastic, the first ball comes to rest after collision.
<h3>Why does the first ball comes to rest after collision ?</h3>
Let m be the mass of the two identical balls.
u1 = velocity before the collision of ball 1
u2 = 0 = velocity of second ball that is at rest
v1 and v2 are the velocities of the balls after the collision.
From the conservation of momentum,
∴ mu1 + mu2 = mv1 + mv2
∴ mu1 = mv1 + mv2
∴ u1 = v1 + v2
In an elastic collision, the kinetic energy of the system before and after collision remains same.
![\frac{1}{2} mu_1^2+0=\frac{1}{2} mv_1^2+\frac{1}{2} mv_2^2](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%20mu_1%5E2%2B0%3D%5Cfrac%7B1%7D%7B2%7D%20%20mv_1%5E2%2B%5Cfrac%7B1%7D%7B2%7D%20%20mv_2%5E2)
∴ ![\frac{1}{2} m(v_1+v_2 )^2=\frac{1}{2} mv_1^2+\frac{1}{2}mv_2^2](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%20m%28v_1%2Bv_2%20%29%5E2%3D%5Cfrac%7B1%7D%7B2%7D%20mv_1%5E2%2B%5Cfrac%7B1%7D%7B2%7Dmv_2%5E2)
∴ ![\frac{1}{2} mv_1^2+\frac{1}{2} mv_2^2+mv_1 v_2=\frac{1}{2} mv_1^2+\frac{1}{2} mv_2^2](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20mv_1%5E2%2B%5Cfrac%7B1%7D%7B2%7D%20mv_2%5E2%2Bmv_1%20v_2%3D%5Cfrac%7B1%7D%7B2%7D%20%20mv_1%5E2%2B%5Cfrac%7B1%7D%7B2%7D%20mv_2%5E2)
∴
₁
₂ = 0
- It is impossible for the mass to be zero.
- Because the second ball moves, velocity v2 cannot be zero.
- As a result, the velocity of the first ball, v1, is zero, indicating that it comes to rest after collision.
<h3>What is collision ?</h3>
An elastic collision is a collision between two bodies in which the total kinetic energy of the two bodies remains constant. There is no net transfer of kinetic energy into other forms such as heat, noise, or potential energy in an ideal, fully elastic collision.
Can learn more about elastic collision from brainly.com/question/12644900
#SPJ4
Answer:
![1.714\ \text{A}](https://tex.z-dn.net/?f=1.714%5C%20%5Ctext%7BA%7D)
Explanation:
F = Magnetic force = 0.018 N
B = Magnetic field = 0.03 T
L = Length of wire = 35 cm
= Angle between current and magnetic field = ![90^{\circ}](https://tex.z-dn.net/?f=90%5E%7B%5Ccirc%7D)
Magnetic force is given by
![F=IBL\sin\theta\\\Rightarrow I=\dfrac{F}{BL\sin\theta}\\\Rightarrow I=\dfrac{0.018}{0.03\times 35\times 10^{-2}\times \sin90^{\circ}}\\\Rightarrow I=1.714\ \text{A}](https://tex.z-dn.net/?f=F%3DIBL%5Csin%5Ctheta%5C%5C%5CRightarrow%20I%3D%5Cdfrac%7BF%7D%7BBL%5Csin%5Ctheta%7D%5C%5C%5CRightarrow%20I%3D%5Cdfrac%7B0.018%7D%7B0.03%5Ctimes%2035%5Ctimes%2010%5E%7B-2%7D%5Ctimes%20%5Csin90%5E%7B%5Ccirc%7D%7D%5C%5C%5CRightarrow%20I%3D1.714%5C%20%5Ctext%7BA%7D)
The magnitude of the current is
.
January 1st 2000
Hope this helps:):):):):)