To solve this problem we will apply the laws of Mersenne. Mersenne's laws are laws describing the frequency of oscillation of a stretched string or monochord, useful in musical tuning and musical instrument construction. This law tells us that the velocity in a string is directly proportional to the root of the applied tension, and inversely proportional to the root of the linear density, that is,

Here,
v = Velocity
= Linear density (Mass per unit length)
T = Tension
Rearranging to find the Period we have that


As we know that speed is equivalent to displacement in a unit of time, we will have to



Therefore the tension is 5.54N
Answer:
C
Explanation:
If Ami is saying she likes it then it it personal. If you are speaking from statistics and studies it is impersonal and technically not from there perspective. All of these do this except C.
Answer:
a. Stars all warm objects
c. Some unstable atomic nuclei
Explanation:
Gamma rays are photons of very high energy (beyond 100keV) enough to remove an electron from its orbit.
They have a very short wavelength, less than 5 meters from the peak, and can be produced by nuclear decay, especially in the breasts of massive stars at the end of life.
They were discovered by the French chemist Paul Villard (1860 to 1934).
While X-rays are produced by electronic transitions in general caused by the collision of an electron with an atom at high speed, gamma rays are produced by nuclear transitions.
Gamma rays produce damage similar to those caused by X-rays or ultraviolet rays (burns, cancer and genetic mutations).
The sources of gamma rays that we observe in the universe come from <u>massive stars (hypernovas) or some warm objects on the space</u> that end their lives by a gravitational collapse that leads to the formation of a neutron star or a black hole, as well as <u>unstable radioactive nuclei </u>that emit radiation gamma to reach its steady state.
Answer:
As You know kinetic Energy is equal (mv^2)/2
You can increase it by increasing the mass(keeping the velocity)
Or You can add velocity
Explanation: