Answer:
Therefore the resistance of the conductor is 175Ω
Explanation:
Resistance:
- Resistance of a metallic conductor is directly proportional to its length(l).
- Resistance of a metallic conductor is inversely proportional to its cross section area(A).
The notation sign of resistance is R.
The unit of resistance is ohm (Ω).
Therefore,

and



ρ is the proportional constant.
It is also known as resistivity of that metal.
Given ρ=35×10⁻⁶Ω-m
l= 20 m
A= 4.0×10⁻⁶m²

=175Ω
Therefore the resistance of the conductor is 175Ω
We have to add two vectors.
Vector #1: 0.15 m/s north
Vector #2: 1.50 m/s east
Their sum:
Magnitude: √(0.15² + 1.50²)
Magnitude = √(0.0225+2.25)
Magnitude = √2.2725
Magnitude = <em>1.5075 m/s</em>
Direction = arctan(0.15/1.50) north of east
Direction = <em>5.71° north of east</em>
Answer:
See Explanation
Explanation:
m1(v1) + m2(v2)
Opposite turns the plus to subtraction.
80(8) - 120(4.0)
60 - 480 = 160 kg m/s to the right
This is an example Newton's Third Law. All the kinectic energy from the moving car transferred the potential energy of the parked car. This potential is not much since the brakes are on (hopefully) and it's not in a non-moving position.
M)³ / 6 = 4.2e9 m³
<span>so its mass is </span>
<span>M = 3300kg/m³ * 4.2e9m³ = 1.4e13 kg </span>
<span>and so its KE at 16 km/s = 16000 m/s is </span>
<span>KE = ½ * 1.4e13kg * (16000m/s)² = 1.8e21 J
</span># of bombs N = 1.8e21J / 4.0e16J/bomb = 44 234 bombs
<span>give or take.
</span>
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.