Answer:
a) 12/323
b) 8/233
Explanation:
a) The probability of a red ball being drawn is 12/38, or in a simplified fraction, 6/19. To find the probability that 3 are red you would multiply the probability of the fraction for each, except subtracting one from the total each time as the drawn is done without replacement. This is done as follows: 6/19 × 6/18 × 6/17= 12/323
b) The probability of drawing a blue ball is 8/38, or 4/19. To find that the first one is blue and the rest are red, the equation is done as follows: 4/19 × 6/18 × 6/17 = 8/233
(hopefully I did this right)
Ionic bonds involve a cation and an anion. The bond is formed when an atom, typically a metal, loses an electron or electrons, and becomes a positive ion, or cation. Another atom, typically a non-metal, is able to acquire the electron(s) to become a negative ion, or anion.
One example of an ionic bond is the formation of sodium fluoride, NaF, from a sodium atom and a fluorine atom. In this reaction, the sodium atom loses its single valence electron to the fluorine atom, which has just enough space to accept it. The ions produced are oppositely charged and are attracted to one another due to electrostatic forces.
Answer:
<h2>6 m/s</h2>
Explanation:
The speed of the man can be found by using the formula
d is the distance
t is the time taken
From the question we have
We have the final answer as
<h3>6 m/s</h3>
Hope this helps you
Answer:
A. 266g/mol
Explanation:
A colligative property of matter is freezing point depression. The formula is:
ΔT = i×Kf×m <em>(1)</em>
Where:
ΔT is change in temperature (0°C - -0,14°C = 0,14°C)i is Van't Hoff factor (1 for a nonelectrolyte dissolved in water), kf is freezing point molar constant of solvent (1,86°Cm⁻¹) and m is molality of the solution (moles of solute per kg of solution). The mass of the solution is 816,0g
Replacing in (1):
0,14°C = 1×1,86°Cm⁻¹× mol Solute / 0,816kg
<em>0,0614 = mol of solute</em>.
As molar mass is defined as grams per mole of substance and the compound weights 16,0g:
16,0g / 0,0614 mol = 261 g/mol ≈ <em>A. 266g/mol</em>
I hope it helps!