<span>Answer: 17.8 cm
</span>
<span>Explanation:
</span>
<span>1) Since temperature is constant, you use Boyle's law:
</span>
<span>PV = constant => P₁V₁ = P₂V₂
</span><span>=> V₁/V₂ = P₂/P₁</span>
<span>
2) Since the ballon is spherical:
</span><span>V = (4/3)π(r)³</span>
<span>
Therefore, V₁/V₂ = (r₁)³ / (r₂)³
</span>
<span>3) Replacing in the equation V₁/V₂ = P₂/P₁:
</span><span><span>(r₁)³ / (r₂)³ </span>= P₂/P₁</span>
<span>
And you can solve for r₂: (r₂)³ = (P₁/P₂) x (r₁)³
</span>(r₂)³ = (1.0 atm / 0.87 atm) x (17 cm)³ = 5,647.13 cm³
<span>
r₂ = 17.8 cm</span>
Answer:
<h2>73.53 mL</h2>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question we have

We have the final answer as
<h3>73.53 mL</h3>
Hope this helps you
Answer:
18,01528
Explanation:
Answer:
A. It is the work done when a force of 1 newton is applied to an object for a distance of 1 meter
Explanation:
Answer:

Explanation:
Hello there!
In this case, according to the given STP (standard pressure and temperature), it is possible for us to realize that the equation to use here is the Avogadro's law as a directly proportional relationship between moles and volume:

In such a way, given the initial volume and both initial and final moles, we can easily compute the final volume as shown below:

Best regards!