Answer:
Exposure of silver chloride to sunlight for a long duration turns grey due to photolytic decomposition i.e decomposition in the presence of sunlight.
Explanation:
When silver chloride, AgCl is exposed to sunlight for a long time, it will undergo decomposition as the sunlight provides sufficient energy needed to decomposed the salt, AgCl to metallic silver and chlorine gas. This can be seen in the equation below:
2AgCl —> 2Ag + Cl2
Answer:
2 CH2 + 3 O2 = 2 CO2 + 2 H2O
Explanation:
This is what I think that you meant by the question listed. When balancing a chemical equation, you want to make sure that there are equal amounts of each element on each side.
Originally, the equation's elements looked like this: 1 C on left & 1 C on right; 2 H on left & 2 H on right; 2 O on left and 3 O on right. Because these are not balanced, you need to add coefficients.
When adding coefficients, you need to make sure that all of the elements stay balanced, not just one that you are trying to fix. I know that some equations are really difficult to balance, and when that is the case, there are equation balancing websites that can help out.
However, what always helps me is making a chart and continuing to keep up with the changes I am making. It is a trial and error process.
Answer:
14.68 moles of He
Explanation:
To do this, just remember Avogadro's Constant or Avogadro's number. This constant tells us how many units ( in this case atoms) there are in a mole of ANY type of substance.
Avogadro's constant is 6.022140857 × 10²³ units per mole.
Now that we know how many atoms there are in 1 mole, we can use this as our conversion factor.
8.84 x 10²⁴ atoms of He → moles of He

So the answer would be:
14.68 moles of He
Answer: Elements in Group 2
Explanation: The periodic table was arranged by Dmitri Mendeleev specifically around similarites in their chemical behaviors. He found that as atomic number increases, at some point an element starts to react in a manner similar to a previous one. When that happened, he would place the larger element under the smaller one, and eventually noticed a periodicity in the table. Elements in a column (Groups) had similiar chemical properties. We know today that these similarities are due to the electron configuration, and that these configurations repeat themselves. He left gaps in the table when he could find an existing element with properties similar to others in that group. I big leap of faith, but it worked. Elements for those missing boxes were eventually discovered.
Answer:
44.9g
Explanation:
You have to convert grams of CH4 to moles, use the mole-to-mole ratio of CH4 to water, and convert back to grams.
(20.0g CH4)(1 mol CH4/16.04g)(2 mol H2O/1 mol CH4)(18.01 g H2O/ 1 mol) = 44.9127 g
Hope this helps!