Answer:
(10, 3)
Step-by-step explanation:
Solve by Substitution
2x − 4y = 8 and 7x − 3y = 61
Solve for x in the first equation.
x = 4 + 2y 7x − 3y = 61
Replace all occurrences of x with 4 + 2y in each e quation.
Replace all occurrences of x in 7x − 3y = 61 with 4 + 2y. 7 (4 + 2y) − 3y = 61
x = 4 + 2y
Simplify 7 (4 + 2y) − 3y.
28 + 11y = 61
x = 4 + 2y
Solve for y in the first equation.
Move all terms not containing y to the right side of the equation.
11y = 33
x = 4 + 2y
Divide each term by 11 and simplify.
y = 3
x = 4 + 2y
Replace all occurrences of y with 3 in each equation.
Replace all occurrences of y in x = 4 + 2y with 3. x = 4 + 2 (3)
y = 3
Simplify 4 + 2 (3).
x = 10
y = 3
The solution to the system is the complete set of ordered pairs that are valid solutions.
(10, 3)
The result can be shown in multiple forms.
Point Form:
(10, 3)
Equation Form:
x = 10, y = 3
Answer: (A) The product of two numbers with the same sign is positive.
Since the numbers in each pair have the same sign, the product will be positive.
The formule is about area of a circle.

We need to solve the equation for x. Where x is the radius of the circle.
In order to solve it for x, we need isolate it for x on left side.
So, first we need to get rid pi from left side.
On dividing both sides by pi, we get


Taking square root on both sides, we get


I/44000=3100/38000
i=3100(44000)/38000
i=$3589.47 (to nearest cent)
Answer:
To show that an equation is an identity: Start with either side of the equation and show that it can algebraically be changed into the other side. Or start with both sides of the equation and show that they both can be changed into the same algebraic expression.
Step-by-step explanation: