Answer:
we have the equation y = (1/2)*x + 4.
now, any equation that passes through the point (4, 6) will intersect this line, so if we have an equation f(x), we must see if:
f(4) = 6.
if f(4) = 6, then f(x) intersects the equation y = (1/2)*x + 4 in the point (4, 6).
If we want to construct f(x), an easy example can be:
f(x) = y = k*x.
such that:
6 = k*4
k = 6/4 = 3/2.
then the function
f(x) = y= (3/2)*x intersects the equation y = (1/2)*x + 4 in the point (4, 6)
Step-by-step explanation:
a scatter plot with no association
The first thing we are going to do is rewrite the expression correctly.
We have:
root (27x ^ 12 / 300x ^ 8)
Rewriting:
root ((27/300) * (x ^ 12 / x ^ 8))
root ((9/100) * (x ^ (12-8)))
root ((9/100) * (x ^ (4)))
root ((9/100) * (x ^ (4)))
3 * x ^ 2 * root ((1/100)
(3 * x ^ 2) / 10
(3/10) * (x ^ 2)
Answer:
(3/10) * (x ^ 2)
The last one because a perpendicular triangle would be drawn from the vertice to the bottom.
A line that passes through an angle and splits it into two equal adjacent angles