Answer:
A
Step-by-step explanation:
We are given a parabola with a vertex point of (2, 1) and a <em>y-</em>intercept of <em>y</em> = 4.
And we want to determine another point on the parabola.
Recall that a parabola is symmetric along the axis of symmetry, which is the <em>x-</em>coordinate of the vertex.
Note that since the <em>y-</em>intercept of the parabola is <em>y</em> = 4, this means that a point on our parabola is (0, 4).
To get from (2, 1) to (0, 4), we move two units left and three units up.
Since the parabola is symmetric along axis of symmetry, another point on the parabola will be two units right and three units up. This yields (2 + 2, 1 + 3) or (4, 4).
Our answer is A.
Answer:
Um sry but what type of teacher tells there kid to do work on break doing freaking imagine math like Boy!lol
Step-by-step explanation:
Answer:
a(1)= -3
a(n)=a(n-1) (-3)
Step-by-step explanation:
hope this helps
Answer: D (-∞, ³⁄₂)
1. Find non - negative values for radicals. x ≤ ³⁄₂
2. Find undefined (singularity) points. x = ³⁄₂
3. Combine real regions and undefined points for final domain.
Final answer: x < ³⁄₂
No 3/7 do not represents the same length on the number line