Answer:
The difference in the sample proportions is not statistically significant at 0.05 significance level.
Step-by-step explanation:
Significance level is missing, it is α=0.05
Let p(public) be the proportion of alumni of the public university who attended at least one class reunion
p(private) be the proportion of alumni of the private university who attended at least one class reunion
Hypotheses are:
: p(public) = p(private)
: p(public) ≠ p(private)
The formula for the test statistic is given as:
z=
where
- p1 is the sample proportion of public university students who attended at least one class reunion (
)
- p2 is the sample proportion of private university students who attended at least one class reunion (
)
- p is the pool proportion of p1 and p2 (
)
- n1 is the sample size of the alumni from public university (1311)
- n2 is the sample size of the students from private university (1038)
Then z=
=-0.207
Since p-value of the test statistic is 0.836>0.05 we fail to reject the null hypothesis.
Answer: The bench is $150 and the garden table is $300
Answer:
but each of those equations in in figure it out if the statement is true or false and give the reason why you think that is
Step-by-step explanation:
Answer:
Step-by-step explanation:
Area of circle = π r²
r = 30
30² = 900
π = 3.14 or ≈ 3
A ≈ 900 × 3
A ≈ 2700
so C at 2830 is closest to the answer