1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
matrenka [14]
3 years ago
11

1 x 0 = 0?

Mathematics
2 answers:
Montano1993 [528]3 years ago
6 0
Any number multiplied by 0 equals 0. So 1 times 0 equals 0. Also if you multiply 1 times 5( for example) will equal 5.
Alexxandr [17]3 years ago
3 0
Both

1 times a=a
and 
b times 0=0
You might be interested in
Please help im so lost Ty btw
klasskru [66]

Answer:

1) gradient  (00) (-2 4) = y2-y1 / 2-1 = 4/-2 = -2  m = -2/1  means = m = -2  (negative slope)   2)  gradient  y2-y1 / x2-x1 = 3-0 / 2-0  = 3/2 = (1 1/2)/1   m = 1 1/2  (positive slope) we use the formula y-values divided by the change in the x-values.    The equation of the gradient each goes like this 1) y = -2x   as y is at origin nothing else to add     The equation of the gradient each goes like this 2) y = 1  1/2x     The equation of the point formula  1) we take the y -y1 = m (x +x 1)  =  y-0 = -2x (x +0)  (as m = -2) y = -2(x +0)   and  The equation of the point formula  2)  y - 0 = m ( x +x1)     y - 0 = 1 1/2( x +0)  = y = 1 1/2( x +0)

5 0
2 years ago
For what value of c is the function defined below continuous on (-\infty,\infty)?
kozerog [31]
f(x)= \left \{ {{x^2-c^2,x \ \textless \  4} \atop {cx+20},x \geq 4} \right


It's clear that for x not equal to 4 this function is continuous. So the only question is what happens at 4.
<span>A function, f, is continuous at x = 4 if 
</span><span>\lim_{x \rightarrow 4} \  f(x) = f(4)

</span><span>In notation we write respectively
</span>\lim_{x \rightarrow 4-} f(x) \ \ \ \text{ and } \ \ \ \lim_{x \rightarrow 4+} f(x)

Now the second of these is easy, because for x > 4, f(x) = cx + 20. Hence limit as x --> 4+ (i.e., from above, from the right) of f(x) is just <span>4c + 20.
</span>
On the other hand, for x < 4, f(x) = x^2 - c^2. Hence 
\lim_{x \rightarrow 4-} f(x) = \lim_{x \rightarrow 4-} (x^2 - c^2) = 16 - c^2

Thus these two limits, the one from above and below are equal if and only if
 4c + 20 = 16 - c²<span> 
 Or in other words, the limit as x --> 4 of f(x) exists if and only if
 4c + 20 = 16 - c</span>²

c^2+4c+4=0&#10;\\(c+2)^2=0&#10;\\c=-2

That is to say, if c = -2, f(x) is continuous at x = 4. 

Because f is continuous for all over values of x, it now follows that f is continuous for all real nubmers (-\infty, +\infty)

4 0
2 years ago
(a) 34 is 85% of what number?<br> (b) What is 15% of 80?
lana [24]

Answer:

A. 40.          B.12

Step-by-step explanation:

40/34=.85

80*.15=12

6 0
2 years ago
Read 2 more answers
Solve for V.<br> 3y=39<br> Simplify your answer as much as possible.
Crank

Answer:

3y=39 :3

y=13

Step-by-step explanation:

prove me wrong

3 0
3 years ago
Sam drives 155 miles in 2 1/2 hours.At that same rate, how far would Same drive in 4 hours?
11111nata11111 [884]
155/(2 1/2)=62
Sam drives at 62 m/h
62*4=248
Sam would drive 248 miles in 4 hours.

Hope this helps :)
3 0
3 years ago
Read 2 more answers
Other questions:
  • Equation A: 3 + 5 = 8 Equation B: (3 + 5) / __ = 4
    8·1 answer
  • a line has a slope of 2 and passes through the point of 3,9. wat is the equation of the line in slope intercept form
    6·1 answer
  • How many lines of symmetry does this polygon have?
    15·1 answer
  • The basic ratio for 24:56
    9·2 answers
  • Which expression is equivalent to 6√8 · √2 <br><br> 48√2<br> 48<br> 24<br> 24√2
    11·1 answer
  • Simplify: 10x-6(7+x)
    14·2 answers
  • 3/7+[-6/11]+[-8/21]+[5/22]​
    12·2 answers
  • What does point b represent on the graph ?
    12·2 answers
  • Which statements are true? and whos down to talk?
    6·2 answers
  • Find the Domain and Range of the following: (6.-1) (-2.2) (18,-1) (-2,3) Domain: Range: Is this relation a function?​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!