Answer: x = 15, ∠K = 45.7°, ∠L = 45.7°, ∠M = 88.6°
<u>Step-by-step explanation:</u>
Since ∠K ≅ ∠L, then ΔKLM is an isoceles triangle with base KL
KM ≅ LM
3x + 23 = 7x - 37
23 = 4x - 37
60 = 4x
15 = x
KM = LM = 3x + 23
= 3(15) + 23
= 45 + 23
= 68
KL = 9x - 40
= 9(15) - 40
= 135 - 40
= 95
Next, draw a perpendicular bisector KN from K to KL. Thus, N is the midpoint of KL and ΔMNL is a right triangle.
- Since N is the midpoint of KL and KL = 95, then NL = 47.5
- Since ∠N is 90°, then NL is adjacent to ∠l and ML is the hypotenuse
Use trig to solve for ∠L (which equals ∠K):
cos ∠L = 
cos ∠L = 
∠L = cos⁻¹ 
∠L = 45.7
Triangle sum Theorem:
∠K + ∠L + ∠M = 180°
45.7 + 45.7 + ∠M = 180
91.4 + ∠M = 180
∠M = 88.6
Step-by-step explanation:
<h3> a) [ -6 +22 – 6 + 8 ] ÷ ( -9 )</h3>
[ -6 +22 – 6 + 8 ] = 18
18 ÷ (-9) = -2
<h3> b) 400 ÷ { 40 – (-2) -3 – ( -1)} </h3>
{40 – (-2) -3 – ( -1)} = { 40 + 2 -3 + 1} = 40
400 ÷ 40 = 10
<h3>c) 40 x -23 + 40 x -17 </h3>
(40 x 23) + (40 x -17)
920 + (-680)
= 240
<h3>d) 1673 x 99 – (-1673) </h3>
(1673 x 99) + 1673
1673 x 100
= 167300
<h3>e) 490 x 98 = 48020</h3>
Hope this helps ^-^
The answer is “12p+10”
4p+8p+10
12p+10