Answer:
Step-by-step explanation:
r(t) = (7 cost + 7t sin t)i + (7 sin t - 7t cos t)j







Using eq (1) and (2)

Answer:
she walked another 2 miles.
Step-by-step explanation:
12% = $42,655.12
.12x = 42655.12
---------------------
0.12 0.12
355,459.33 is the price of the house.
Answer:
<h2>f(x) = 3x + 4</h2>
Step-by-step explanation:
f(x + 1) = 3x - 7
f(x) = f(x + 1 - 1) = 3(x - 1) + 7 = 3x - 3 + 7 = 3x + 4
Check
f(x) = 3x + 4
f(x + 1) = 3(x + 1) + 4 = 3x + 3 + 4 = 3x + 7 CORRECT