1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MissTica
3 years ago
8

WILL GIVE BRAINLIEST AND 20 PTS

Mathematics
1 answer:
exis [7]3 years ago
5 0

Answer:16

Step-by-step explanation:dsbwdb

You might be interested in
Identify the underline place 75.733
muminat

Answer: Digit Place Value

                7                Tens

                5                Ones

                 .  

                7                Tenths

                3                Hundredths

                3                Thousandths

Step-by-step explanation: this should help its not the answer but it's support

3 0
2 years ago
I honestly need help with these
Brilliant_brown [7]

9. The curve passes through the point (-1, -3), which means

-3 = a(-1) + \dfrac b{-1} \implies a + b = 3

Compute the derivative.

y = ax + \dfrac bx \implies \dfrac{dy}{dx} = a - \dfrac b{x^2}

At the given point, the gradient is -7 so that

-7 = a - \dfrac b{(-1)^2} \implies a-b = -7

Eliminating b, we find

(a+b) + (a-b) = 3+(-7) \implies 2a = -4 \implies \boxed{a=-2}

Solve for b.

a+b=3 \implies b=3-a \implies \boxed{b = 5}

10. Compute the derivative.

y = \dfrac{x^3}3 - \dfrac{5x^2}2 + 6x - 1 \implies \dfrac{dy}{dx} = x^2 - 5x + 6

Solve for x when the gradient is 2.

x^2 - 5x + 6 = 2

x^2 - 5x + 4 = 0

(x - 1) (x - 4) = 0

\implies x=1 \text{ or } x=4

Evaluate y at each of these.

\boxed{x=1} \implies y = \dfrac{1^3}3 - \dfrac{5\cdot1^2}2 + 6\cdot1 - 1 = \boxed{y = \dfrac{17}6}

\boxed{x = 4} \implies y = \dfrac{4^3}3 - \dfrac{5\cdot4^2}2 + 6\cdot4 - 1 \implies \boxed{y = \dfrac{13}3}

11. a. Solve for x where both curves meet.

\dfrac{x^3}3 - 2x^2 - 8x + 5 = x + 5

\dfrac{x^3}3 - 2x^2 - 9x = 0

\dfrac x3 (x^2 - 6x - 27) = 0

\dfrac x3 (x - 9) (x + 3) = 0

\implies x = 0 \text{ or }x = 9 \text{ or } x = -3

Evaluate y at each of these.

A:~~~~ \boxed{x=0} \implies y=0+5 \implies \boxed{y=5}

B:~~~~ \boxed{x=9} \implies y=9+5 \implies \boxed{y=14}

C:~~~~ \boxed{x=-3} \implies y=-3+5 \implies \boxed{y=2}

11. b. Compute the derivative for the curve.

y = \dfrac{x^3}3 - 2x^2 - 8x + 5 \implies \dfrac{dy}{dx} = x^2 - 4x - 8

Evaluate the derivative at the x-coordinates of A, B, and C.

A: ~~~~ x=0 \implies \dfrac{dy}{dx} = 0^2-4\cdot0-8 \implies \boxed{\dfrac{dy}{dx} = -8}

B:~~~~ x=9 \implies \dfrac{dy}{dx} = 9^2-4\cdot9-8 \implies \boxed{\dfrac{dy}{dx} = 37}

C:~~~~ x=-3 \implies \dfrac{dy}{dx} = (-3)^2-4\cdot(-3)-8 \implies \boxed{\dfrac{dy}{dx} = 13}

12. a. Compute the derivative.

y = 4x^3 + 3x^2 - 6x - 1 \implies \boxed{\dfrac{dy}{dx} = 12x^2 + 6x - 6}

12. b. By completing the square, we have

12x^2 + 6x - 6 = 12 \left(x^2 + \dfrac x2\right) - 6 \\\\ ~~~~~~~~ = 12 \left(x^2 + \dfrac x2 + \dfrac1{4^2}\right) - 6 - \dfrac{12}{4^2} \\\\ ~~~~~~~~ = 12 \left(x + \dfrac14\right)^2 - \dfrac{27}4

so that

\dfrac{dy}{dx} = 12 \left(x + \dfrac14\right)^2 - \dfrac{27}4 \ge 0 \\\\ ~~~~ \implies 12 \left(x + \dfrac14\right)^2 \ge \dfrac{27}4 \\\\ ~~~~ \implies \left(x + \dfrac14\right)^2 \ge \dfrac{27}{48} = \dfrac9{16} \\\\ ~~~~ \implies \left|x + \dfrac14\right| \ge \sqrt{\dfrac9{16}} = \dfrac34 \\\\ ~~~~ \implies x+\dfrac14 \ge \dfrac34 \text{ or } -\left(x+\dfrac14\right) \ge \dfrac34 \\\\ ~~~~ \implies \boxed{x \ge \dfrac12 \text{ or } x \le -1}

13. a. Compute the derivative.

y = x^3 + x^2 - 16x - 16 \implies \boxed{\dfrac{dy}{dx} = 3x^2 - 2x - 16}

13. b. Complete the square.

3x^2 - 2x - 16 = 3 \left(x^2 - \dfrac{2x}3\right) - 16 \\\\ ~~~~~~~~ = 3 \left(x^2 - \dfrac{2x}3 + \dfrac1{3^2}\right) - 16 - \dfrac13 \\\\ ~~~~~~~~ = 3 \left(x - \dfrac13\right)^2 - \dfrac{49}3

Then

\dfrac{dy}{dx} = 3 \left(x - \dfrac13\right)^2 - \dfrac{49}3 \le 0 \\\\ ~~~~ \implies 3 \left(x - \dfrac13\right)^2 \le \dfrac{49}3 \\\\ ~~~~ \implies \left(x - \dfrac13\right)^2 \le \dfrac{49}9 \\\\ ~~~~ \implies \left|x - \dfrac13\right| \le \sqrt{\dfrac{49}9} = \dfrac73 \\\\ ~~~~ \implies x - \dfrac13 \le \dfrac73 \text{ or } -\left(x-\dfrac13\right) \le \dfrac73 \\\\ ~~~~ \implies \boxed{x \le 2 \text{ or } x \ge \dfrac83}

5 0
2 years ago
PLEASE! I need the prime-power factorizations for these!!!
Luba_88 [7]

Answer:

21) 2 x 11

23) 2 x 2 x 2 x 3

25) 3 x 5

27) 2 x 2 x 5

29) 3 x 7

Step-by-step explanation:

7 0
3 years ago
Write 2 equivalent expressions for each and find the total price ​
almond37 [142]

Answer:

it will be 20$ if im wrong you can correct me

4 0
2 years ago
The cosine of 55 1/2 degrees is approximately 0.566. What angle, in degrees, has a sine of approximately 0.566?
astra-53 [7]

Given:

\cos (55\dfrac{1}{2})^\circ\approx 0.566

To find:

The angle, in degrees, that has a sine of approximately 0.566.

Solution:

We know that,

\sin(90^\circ-x)=\cos x

We have,

\cos (55\dfrac{1}{2})^\circ\approx 0.566

Using the above trigonometric identity, it can be written as:

\sin (90-55\dfrac{1}{2})^\circ\approx 0.566

\sin (90-\dfrac{110+1}{2})^\circ\approx 0.566

\sin (90-\dfrac{111}{2})^\circ\approx 0.566

Taking LCM, we get

\sin (\dfrac{180-111}{2})^\circ\approx 0.566

\sin (\dfrac{69}{2})^\circ\approx 0.566

\sin (34\dfrac{1}{2})^\circ\approx 0.566

Therefore, the angle 34\dfrac{1}{2} degrees has a sine of approximately 0.566.

4 0
3 years ago
Other questions:
  • The equation y = 1.55x + 110,419 approximates the total amount, in dollars, spent by a household to raise a child in the United
    8·2 answers
  • The kite has vertices D(0,u), G(-w,0), and F(0,-2). What are the coordinates of E ?
    6·2 answers
  • Please help! i’m confused
    12·2 answers
  • Ericka had 20 dogs in the dog nursery puppy josh took 3 how many is left show your work
    12·1 answer
  • there are 2 germs in a jar and they multiply by 2 every minute how many germs are there after a hour​
    14·1 answer
  • Find the measure of the exterior angle X:<br> 125
    12·1 answer
  • Whats the answer for this ​
    8·1 answer
  • Please solve this equation<br><br>2z+3=9
    10·2 answers
  • Solve for y and x<br> 2+3x-1=4y <br> And <br> 2x-3=y
    5·1 answer
  • The table shows the possible outcomes of spinning the given
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!