The point that the graphs of f and g have in common are (1,0)
<h3>How to get the points?</h3>
The given functions are:
f(x) = log₂x
and
g(x) = log₁₀x
We know that logarithm of 1 is always zero.
This means that irrespective of the base, the y-values of both functions will be equal to 0 at x=1
Therefore the point the graphs of f and g have in common is (1,0).
Learn more about graph on:
brainly.com/question/19040584
#SPJ1
Answer:
The data table is attached below.
Step-by-step explanation:
The average of a set of data is the value that is a representative of the entire data set.
The formula to compute averages is:

Compute the average for drop 1 as follows:
![\bar x_{1}=\frac{1}{3}\times[10+11+9]=10](https://tex.z-dn.net/?f=%5Cbar%20x_%7B1%7D%3D%5Cfrac%7B1%7D%7B3%7D%5Ctimes%5B10%2B11%2B9%5D%3D10)
Compute the average for drop 2 as follows:
![\bar x_{2}=\frac{1}{3}\times[29+31+30]=30](https://tex.z-dn.net/?f=%5Cbar%20x_%7B2%7D%3D%5Cfrac%7B1%7D%7B3%7D%5Ctimes%5B29%2B31%2B30%5D%3D30)
Compute the average for drop 3 as follows:
![\bar x_{3}=\frac{1}{3}\times[59+58+61]=59.33](https://tex.z-dn.net/?f=%5Cbar%20x_%7B3%7D%3D%5Cfrac%7B1%7D%7B3%7D%5Ctimes%5B59%2B58%2B61%5D%3D59.33)
Compute the average for drop 4 as follows:
![\bar x_{4}=\frac{1}{3}\times[102+100+98]=100](https://tex.z-dn.net/?f=%5Cbar%20x_%7B4%7D%3D%5Cfrac%7B1%7D%7B3%7D%5Ctimes%5B102%2B100%2B98%5D%3D100)
Compute the average for drop 5 as follows:
![\bar x_{5}=\frac{1}{3}\times[122+125+127]=124.67](https://tex.z-dn.net/?f=%5Cbar%20x_%7B5%7D%3D%5Cfrac%7B1%7D%7B3%7D%5Ctimes%5B122%2B125%2B127%5D%3D124.67)
The data table is attached below.
The answer is -4,7
The denominator can't equal zero. Factor the denominator:
x^2 - 3x - 28=
(X - 7)(x + 4); next set each set of parentheses equal to 0;
x - 7 = 0; so x=7 is one value
x + 4 = 0; so x=-4 is the other
Remember, x = 7 and x= -4 make the denominator zero, which is a "restriction" because you can't divide by zero.
Answer:
3) 0.326
Step-by-step explanation:
Total Number of surveyed households =125
We want to determine the probability that a randomly selected household would have a laptop given that it does not have a tablet.
Written in Probability notation: P(Laptop|No Tablet)

The correct option is C,