Answer:
yea me too you know your question is gunna get deleted bc it is not school related but I'm not gunna report it or anything
Explanation:
Answer:
A. Speed is a scalar quantity and velocity is a vector quantity.
Explanation:
A scalar quantity is one that consists of only a numerical value.
Speed is a scalar quantity because only the instantaneous value is indicated, for example the speedometer of a car that tells you your speed at the moment but not where you are going or in what direction are you going.
On the other hand, velocity is a vector quantity. Because it is composed of a <u>magnitude and a direction</u>, for example 10m/s to the south is a velocity, and 10m/s is a speed.
Given that,
Horizontal velocity of the object, v = 20 m/s
Height of the cliff, h = 125 m
We need to find the time that it takes the object to fall to the ground from the cliff is most nearly. It can be calculated using second equation of motion. Let us consider that the initial speed of the object is 0. So,

Here, a = g and u = 0

So, the object will take 5 seconds to fall to the ground from the cliff.
Answer:
6.0 s
98 m/s
Explanation:
The radius of the planet is much bigger than the height of the tower, so we will assume the acceleration is constant. Neglect air resistance.
Acceleration due to gravity on this planet is:
a = GM / r²
a = (6.67×10⁻¹¹ m³/kg/s²) (2.7 × 1.48×10²³ kg) / (1.7 × 750,000 m)²
a = 16.4 m/s²
The height of the tower is:
Δy = 96 × 3.05 m
Δy = 293 m
Given v₀ = 0 m/s, find t and v.
Δy = v₀ t + ½ at²
(293 m) = (0 m/s) t + ½ (16.4 m/s²) t²
t = 6.0 s
v² = v₀² + 2aΔy
v² = (0 m/s)² + 2 (16.4 m/s²) (293 m)
v = 98 m/s