Answer:
92704.5 J
596.44737 N
Explanation:
m = Mass of person + bicycle = 75 kg
g = Acceleration due to gravity = 9.81 m/s²
h = Vertical height = 126 m
= Angle = 7.7°
d = Diameter = 0.388 m
Work done against gravity is given by

Work done is 92704.5 J
Force required is given by

The force is 596.44737 N
Answer:
a) 35.75 ft/s
b) 45 ft
Explanation:
<u>Given </u>
Weight W = 100 lbf
mass(m) = 100*32.174/32.2=99.92 lb
decrease in kinetic energy ΔKE = -500 ft.lbf
increase in kinetic energy ΔPE= 1500 ft.lbf
initial velocity V_1 = 40 ft/s
initial height h_1 = 30 ft/s
The gravitational acceleration g = 32.2 ft/s2 Required
(a) Final velocity V_2 (a) Final elevation h_2
<u>Solution </u>
Change in kinetic energy is defined by
ΔKE = .5*m *( V_2 ^2-V_1^2)
Change in potential energy is defined by
ΔKE = W *( h_2 -h_1 )
Then,
-500=.5*99.92*1/32.174*(V_2 ^2-40^2)
V_2=35.75 ft/s
1500 = 100 x (h_2 — 30)
h_2= 45 ft
Here I =0.4 amp and t=2hr or 2×60×60 sec
We known I=nQ/t where Q is charge and n is no of charge.
n=It/Q
0.4x(2x60x60)/1.6x10^-19
Answer:
60°
Explanation:
The scalar product of two vectors with an angle ∅ between them is defined as:

Solving for angle ∅:
