Answer:
The fence is 5feet less.
Explanation:
We need to determine
The less amount of fence required, if the enclosure has full width and reduced length, compared to full length and reduced width.
Approach & WorkingArea of lawn = 30 × 403/4th of the area of lawn = ¾(30 × 40) = 30 * 30
When full width will be fenced, and reduced length will be fenced.
Width = 30 feet30 * L = 30 * 30Hence, length = 30 feetLength of fence needed = 2(30 + 30) = 120 feet
When full length will be fenced, and reduced width will be fenced
Length = 40 feet40 * W = 30 * 30W = 22.5 feetLength of fence needed = 2(40 + 22.5) = 125 feet
Difference in length of fence needed = 125 – 120 = 5 feet.
Answer:
Explanation:Naturally occurring radioactive materials are present in its crust, the floors and walls of our homes, schools, or offices and in the food we eat and drink. There are radioactive gases in the air we breathe. Our own bodies - muscles, bones, and tissue - contain naturally occurring radioactive elements.
The velocity of the object is zero (the object is at rest)
Explanation:
A position vs time graph represents the motion of an object; in particular:
- The position of the object x(t) is represented on the y-axis
- The time t is represented on the x-axis
For a position-time graph, the slope of the graph is given by

where
is the change in position
is the change in time
However, we see that this is equivalent to the definition of velocity:

Therefore, the slope of a position-time graph is equivalent to the velocity of the object.
And so, a horizontal segment on a position vs time graph means that the object has zero velocity (because the slope is zero).
Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly
Answer:
The wave speed of the sound wave is 900
.
Explanation:
Wavelength is the minimum distance between two successive points on the wave that are in the same state of vibration. It is expressed in units of length (m).
Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).
The propagation velocity is the speed with which the wave propagates in the medium, that is, it is the magnitude that measures the speed at which the wave disturbance propagates along its displacement. Relate the wavelength (λ) and the frequency (f) inversely proportional using the following equation: v = f * λ.
In this case:
Replacing:
v= 500 Hz* 1.8 m
v= 900 
<u><em>The wave speed of the sound wave is 900 </em></u>
<u><em>.</em></u>