1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fudgin [204]
3 years ago
14

How many sides are allowed to meet at a vertex

Mathematics
2 answers:
lianna [129]3 years ago
7 0
Usually 2 or more, but on some circumstances, less than 2. 
miskamm [114]3 years ago
4 0
Well a vertex is a point where two sides meet. 
You might be interested in
Base: z(x)=cosx Period:180 Maximum:5 Minimum: -4 What are the transformation? Domain and Range? Graph?
garik1379 [7]

Answer:

The transformations needed to obtain the new function are horizontal scaling, vertical scaling and vertical translation. The resultant function is z'(x) = \frac{1}{2}  + \frac{9}{2} \cdot \cos \left(\frac{\pi\cdot x}{90^{\circ}} \right).

The domain of the function is all real numbers and its range is between -4 and 5.

The graph is enclosed below as attachment.

Step-by-step explanation:

Let be z (x) = \cos x the base formula, where x is measured in sexagesimal degrees. This expression must be transformed by using the following data:

T = 180^{\circ} (Period)

z_{min} = -4 (Minimum)

z_{max} = 5 (Maximum)

The cosine function is a periodic bounded function that lies between -1 and 1, that is, twice the unit amplitude, and periodicity of 2\pi radians. In addition, the following considerations must be taken into account for transformations:

1) x must be replaced by \frac{2\pi\cdot x}{180^{\circ}}. (Horizontal scaling)

2) The cosine function must be multiplied by a new amplitude (Vertical scaling), which is:

\Delta z = \frac{z_{max}-z_{min}}{2}

\Delta z = \frac{5+4}{2}

\Delta z = \frac{9}{2}

3) Midpoint value must be changed from zero to the midpoint between new minimum and maximum. (Vertical translation)

z_{m} = \frac{z_{min}+z_{max}}{2}

z_{m} = \frac{1}{2}

The new function is:

z'(x) = z_{m} + \Delta z\cdot \cos \left(\frac{2\pi\cdot x}{T} \right)

Given that z_{m} = \frac{1}{2}, \Delta z = \frac{9}{2} and T = 180^{\circ}, the outcome is:

z'(x) = \frac{1}{2}  + \frac{9}{2} \cdot \cos \left(\frac{\pi\cdot x}{90^{\circ}} \right)

The domain of the function is all real numbers and its range is between -4 and 5. The graph is enclosed below as attachment.

8 0
3 years ago
13. One-fourth of a number is the same as the square of -3
Alex777 [14]
Whats the answer choices
4 0
2 years ago
Is (x-4) a factor of f(x) = x3 - 2x2 + 5x + 1? Use either the remainder theorem or the factor theorem to explain your reasoning.
Virty [35]

Answer:

(x-4) is not a factor of f(x)=x³-2x²+5x+1

Step-by-step explanation:

Uding the remainder theorem,(x-4) is a factor if the remainder is 0

Plug in x=4

(4)³-2(4)²+5(4)+1

64-32+20+1

64-53

11

7 0
2 years ago
How many solutions can be found for the linear equation?<br><br> 4(x + 5) - 5 = <br> 8x + 18<br> 2
Elena L [17]

Answer:

4x + 20 - 5 = 0 \\ 4x + 15  = 0 \\ 4x =  - 15 \\ x = -   \frac{15}{4}

Step-by-step explanation:

8x + 18 = 0 \\ 8x =  - 18 \\ x =  -  \frac{18}{8}  \\ x =  -  \frac{9}{4}

7 0
2 years ago
I DESPERATELY NEED HELP PLZ ANSWER THESE QUESTIONS I AM TIMED AND DON"T HAVE MUCH TIME LEFT
Marina CMI [18]

Answer:

Ok I will help you answer the first one the rest yourself?

Step-by-step explanation:

So the question is

6(r-s+t)

we have to time each number by 6

6r-6s+6t

That's how we can simply so the answer is 6r-6s+t

Same thing goes with the others

Hope it helps 0w0

5 0
2 years ago
Other questions:
  • X+3=15 can some body solve this for me
    9·2 answers
  • 8(2x+9)=56 I need some help with this I just don't get it
    5·2 answers
  • According to Erik H. Erikson, how many stages are there in human development?
    6·2 answers
  • 4 hundredths +8 hundredths =<br> Express your answer in standard form
    14·2 answers
  • Which number, when placed in the box, will make the equation true?
    14·1 answer
  • Approximately 1,000,000 people cross the shibuya crossing intersection each day.
    12·1 answer
  • Write the term that completes the sentence.
    15·1 answer
  • Find the slope of the line through the given pair of points, if possible. Based on the slope, indicate whether the line through
    7·1 answer
  • Use the distributive property to remove the parentheses?<br><br> -8(-4w-3v+6)
    10·1 answer
  • Please help me out ​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!