MN = √2
it comes from √(1^2 + 1^2) = √2 (use phytagoras)
LK = 2 x MN = 2 √2
NK = √(2^2 + 1^2) = √5
ML = NK = √5
so the perimeter
√2 + 2 √2 + √5 + √5
3 √2 + 2 √5
Answer:
a = 7
Step-by-step explanation:
This is a special trig triangles. Special trig triangles are identified by their angle measures and their sides have a unique relationship. This is a 30 - 60 - 90 triangle which has sides 1 - √3 - 2 or multiples of this. This means all 30 - 60 - 90 triangles have side lengths with the pattern 1 - √3 - 2. Here the triangle has a - 7√√3 - 14. The value of a is 7 since 7*√3 = 7√3 and 2*7 = 14.
\left[x \right] = \left[ \frac{5\,y}{158}+\frac{6\,z}{79}\right][x]=[1585y+796z]
Answer:
7 is your answer
Step-by-step explanation:
Hope that helps you