Missing graph. I attach it in the answer.
In a uniformly accelerated motion, the velocity at time t is given by:

where a is the acceleration and t is the time.
Given the previous equation, if we plot v(t) versus t, we find a straight line; moreover, a (the acceleration) represents the slope of the curve.
Looking at the graph, we see that when the time goes from 10 s to 20 s, the velocity increases from 4 m/s to 6 m/s. Therefore the slope of the curve is

and this corresponds to the acceleration.
So, the correct answer is <span>
0.2 m/s2.</span>
Yes. The line is increasing. The flat line at the top of the graph is where there is not acceleration and the decreasing line is deceleration.
Answer:
answer should be 10 because the line goes from (0,0) then to (1,10) and so on
We have that F=ma from the 2nd Newton law where F is the force, m is the mass and a is the acceleration. Suppose we have that F' is the new force and m' is the new mass. Then, we have that a'=F'/m' still, by rearranging Newton's law. We are given that F'=2F and m'=m/2. Hence,

But now, we have from F=ma, that a=F/m and we are given that a=1m/s^2.
We can substitute thus, a'=4a=4*1m/s^2=4m/s^2.

Actually Welcome to the Concept of the kinematics of a body.
Since, we know that Velocity = Distance / time
hence, V = 20/5 = 4 m/s
hence the velocity of the RC car is 4 m/s westwards direction.