1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tino4ka555 [31]
3 years ago
6

A 1.10-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Figure a). The object has a sp

eed of vi = 2.60 m/s when it makes contact with a light spring (Figure b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Figure c). The object is then forced toward the left by the spring (Figure d) and continues to move in that direction beyond the spring's unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Figure e).
The right end of a horizontal spring labeled k is attached to a wall. Five images show five configurations as a block labeled m approaches, compresses, and then moves away from the spring.
In figure a, the block is to the left of the spring, and an arrow above the block points to the right.
In figure b, the block is just touching the uncompressed spring, and an arrow labeled vector vi above the block points to the right.
In figure c, the block has compressed the spring by a distance d, and a label indicates vector vf = 0.
In figure d, the block is just touching the uncompressed spring, and an arrow labeled vector v above the block points to the left.
In figure e, the block is a distance D away from the spring, and a label indicates vector v = 0.
(a)
Find the distance of compression d (in m).
m
(b)
Find the speed v (in m/s) at the unstretched position when the object is moving to the left (Figure d).
m/s
(c)
Find the distance D (in m) where the object comes to rest.
m
(d)
What If? If the object becomes attached securely to the end of the spring when it makes contact, what is the new value of the distance D (in m) at which the object will come to rest after moving to the left?
m

Physics
1 answer:
cluponka [151]3 years ago
7 0

Answer:

(a) Approximately 0.335\; \rm m.

(b) Approximately 1.86\; \rm m\cdot s^{-1}.

(c) Approximately 0.707\; \rm m.

(d) Approximately 0.228\; \rm m.

Explanation:

  • v_i denotes the velocity of the object in the first diagram right before it came into contact with the spring.
  • Let m denote the mass of the block.
  • Let \mu denote the constant of kinetic friction between the object and the surface.
  • Let g denote the constant of gravitational acceleration.
  • Let k denote the spring constant of this spring.
<h3>(a)</h3>

Consider the conversion of energy in this object-spring system.

First diagram: Right before the object came into contact with the spring, the object carries kinetic energy \displaystyle \frac{1}{2}\, m \cdot {v_{i}}^2.

Second diagram: As the object moves towards the position in the third diagram, the spring gains elastic potential energy. At the same time, the object loses energy due to friction.

Third diagram: After the velocity of the object becomes zero, it has moved a distance of D and compressed the spring by the same distance.

  • Energy lost to friction: \underbrace{(\mu \cdot m \cdot g)}_{\text{friction}} \cdot D.
  • Elastic potential energy that the spring has gained: \displaystyle \frac{1}{2}\,k\, D^2.

The sum of these two energies should match the initial kinetic energy of the object (before it comes into contact with the spring.) That is:

\displaystyle \frac{1}{2}\, m \cdot {v_{i}}^{2} = (\mu\cdot m \cdot g) \cdot D + \frac{1}{2}\, k \cdot D^2.

Assume that g = 9.81\; \rm m \cdot s^{-2}. In the equation above, all symbols other than D have known values:

  • m =1.10\; \rm kg.
  • v_i = 2.60\; \rm m \cdot s^{-1}.
  • \mu = 0.250.
  • g = 9.81\; \rm m \cdot s^{-2}.
  • k = 50.0\; \rm N \cdot m^{-1}.

Substitute in the known values to obtain an equation for D (where the unit of D\! is m.)

3.178 = 2.69775\, D + 25\, D^2.

2.69775\, D + 25\, D^2 + 3.178 = 0.

Simplify and solve for D. Note that D > 0 because the energy lost to friction should be greater than zero.

D \approx 0.335\; \rm m.

<h3>(b)</h3>

The energy of the object-spring system in the third diagram is the same as the elastic potential energy of the spring:

\displaystyle \frac{1}{2}\,k\, D^2 \approx 2.81\; \rm J.

As the object moves to the left, part of that energy will be lost to friction:

(\mu \cdot m \cdot g) \, D \approx 0.905\; \rm J.

The rest will become the kinetic energy of that block by the time the block reaches the position in the fourth diagram:

2.81\; \rm J - 0.905\; \rm J \approx 1.91\; \rm J.

Calculate the velocity corresponding to that kinetic energy:

\displaystyle v =\sqrt{\frac{2\, (\text{Kinetic Energy})}{m}} \approx 1.86\; \rm m \cdot s^{-1}.

<h3>(c)</h3>

As the object moves from the position in the fourth diagram to the position in the fifth, all its kinetic energy (1.91\; \rm J) would be lost to friction.

How far would the object need to move on the surface to lose that much energy to friction? Again, the size of the friction force is \mu \cdot m \cdot g.

\displaystyle (\text{Distance Travelled}) = \frac{\text{(Work Done by friction)}}{\text{(Size of the Friction Force)}} \approx0.707\; \rm m.

<h3>(d)</h3>

Similar to (a), solving (d) involves another quadratic equation about D.

Left-hand side of the equation: kinetic energy of the object (as in the fourth diagram,) 1.91\; \rm J.

Right-hand side of the equation: energy lost to friction, plus the gain in the elastic potential energy of the spring.

\displaystyle {1.91\; \rm J} \approx (\mu\cdot m \cdot g) \cdot D + \frac{1}{2}\, k \cdot D^2.

25\, D^2 + 2.69775\, D - 1.90811\approx 0.

Again, D > 0 because the energy lost to friction is greater than zero.

D \approx 0.228\; \rm m.

You might be interested in
If you were to drop a rock from a tall building, assuming that it had not yet hit the ground, and neglecting air resistance. Wha
Marizza181 [45]

Answer:

320m

Explanation:

The vertical displacement is given by:

y_0-y=\frac{1}{2}gt^2-v_0t

Assuming v₀=0, t=8:

y_0-y=\frac{10}{2} \times 8^2 + 0\times 8 = 320

5 0
3 years ago
A 230 kg steel crate is being pushed along a cement floor. The force of friction is 480 N to the left and the applied force is 1
tangare [24]
It is unbalanced.......
7 0
3 years ago
Read 2 more answers
Which type of energy is stored in a stretched string on the bow in the following figure ​
emmasim [6.3K]

Answer:

potential energy

Explanation:

8 0
3 years ago
Read 2 more answers
In a natural gas power plant, natural gas is burned to heat steam, which turns a turbine. What energy conversion is happening in
Irina18 [472]
<h2>Hello!</h2>

The answer is A. Chemical energy to heat energy to kinetic energy to electrical energy.

<h2>Why?</h2>

Let's check the energy conversion given in the statement:

Chemical energy: Chemical energy is usually obtained from a natural resource combustion. For this particular case is the result of natural gas combustion.

Heat energy: Heat energy comes from chemical reactions such as natural gas combustions.

Kinetic energy: Kinetic energy is obtained by turbines transforming the pressurized steam on mechanical movement. Turbines are formed by a turbine that absorbs the heat energy to do mechanical work and transmit it to an output rotating shaft.

Electrical energy: Electrical energy is generated by gas turbines when the rotating output shaft is connected to an electrical generator. Electrical generators use mechanical energy to generate electrical energy by using electromagnetic induction. Electrical generators are basically formed by a rotor and a stator.

Have a nice day!

5 0
3 years ago
Read 2 more answers
For this problem, imagine that you are on a ship that is oscillating up and down on a rough sea. Assume for simplicity that this
ikadub [295]

Answer:

no idea

Explanation:

7 0
3 years ago
Other questions:
  • what is the acceleration of a bowling ball that starts at rest and moves 300m down the gutter in 22.4 sec
    10·1 answer
  • What is the gravitational potential energy of a two-particle system with masses 4.5 kg and 6.3 kg, if they are separated by 1.7
    10·1 answer
  • Where is the center of mass of the Earth-Moon system? The radius of the Earth is 6378 km and the radius of the Moon is 1737 km.
    6·1 answer
  • A well-known transform boundary found in California is the _____. San Francisco fault, San Andreas fault, San Diego fault, OR Sa
    12·2 answers
  • How do invasive species spread? identify three methods.Why do invasive species pose such a threat?
    15·1 answer
  • Most psychologists would fall under what category of care?
    12·2 answers
  • If the radius of the earth was suddenly tripled and its mass doubled, the surface gravitational acceleration would become: A) 9.
    15·1 answer
  • Max is helping his parents move to a new house. He picks up one box and is able to carry it into the house. He tries to pick up
    11·2 answers
  • Dr paivio studies the ways In which the endocrine system and the nervous system are similar.
    11·1 answer
  • Asymmetric dimethylarginine, endocan, pentraxin 3, serum amyloid A, soluble urokinase plasminogen activator receptor, total oxid
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!