Answer:
The leverage or mechanical advantage of pulleys is less obvious, but you can "gang" multiple pulleys together into two sets (blocks) and run the ropes back and forth between the two sets to increase the number of lengths of rope running between them. One end of the rope is connected (fixed) to one of the blocks, and you get to pull on the other end after it is passed back and forth between the blocks of pulleys. This is sometimes called a block and tackle arrangement. With a hook on each side of the block set, you can move a heavy load much like levers do, by multiplying the force. You have to pull more rope just like you have to move a lever more on one side of the fulcrum as compared to the other. When you get all the rope pulled out that you can, you can not move the load anymore because you have become "two-blocked" which means the two blocks are together. Credits to: Moin Khan
The acceleration due to gravity of Mars is 
<u>Explanation:</u>
As per universal law of gravity, the gravitational force is directly proportional to the product of masses and inversely proportional to the square of the distance between them. But in the present case, the gravity need to be determined between Mars and the object on Mars. Since the mass of Mars is greater than the mass of any object. Thus,

Here, G is the gravitational constant, R is the radius of Mars and M, m is the mass of Mars and the object respectively..
Also, according to Newton’s second law of motion, the acceleration of any object will be equal to the ratio of force exerted on it to the mass of the object.
So in order to determine the acceleration due to gravity of Mars, divide the gravitational force of Mars by mass of object on the surface of Mars.



