1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ycow [4]
3 years ago
11

If pressure is increased from 200 kPa to 300 kPa, and the original volume of gas was 1.5 L, what is the new volume? Assume the t

emperature and number of particles are constant.
a. 0.5 L
b. 1 L
c. 2 L
d. 3 L
Physics
1 answer:
Oxana [17]3 years ago
6 0

Answer:

The answer to your question is:      V2 = 1 l

Explanation:

Data

P1 = 200 kPa

P2 = 300 kPa

V1 = 1.5 l

V2 = ?

Formula

                          P1V1 = P2V2

                          V2 = (P1V1) / P2

                          V2 = (200 x 1.5) / 300

                          V2 = 1 l

You might be interested in
A comet is a
Juli2301 [7.4K]
The answer is D. Small object made of ice and dust that orbits the Sun and forms a coma as it approaches the Sun.
7 0
2 years ago
Imagine that Kevin can instantly transport himself between Planet X and Planet Y. Which statement could be said about Kevin in t
Over [174]
What are the choices ? 

Without some directed choices, I'm, free to make up any
reasonable statement that could be said about Kevin in this
situation.  A few of them might be . . .

-- Kevin will have no trouble getting back in time for dinner.

-- Kevin will have no time to enjoy the scenery along the way.

-- Some simple Physics shows us that Kevin is out of his mind.
He can't really do that.

           -- Speed = (distance covered) / (time to cover the distance) .

If time to cover the distance is zero, then speed is huge (infinite).

           -- Kinetic energy = (1/2) (mass) (speed)² .

If speed is huge (infinite), then kinetic energy is huge squared (even more).
There is not enough energy in the galaxy to push Kevin to that kind of speed.

         -- Mass = (Kevin's rest-mass) / √(1 - v²/c²)

-- As soon as Kevin reaches light-speed, his mass becomes infinite.
-- It takes an infinite amount of energy to push him any faster.
-- If he succeeds somehow, his mass becomes imaginary.
-- At that point, he might as well turn around and go home ...
     if he ever reached Planet-Y, nobody could see him anyway.
8 0
2 years ago
Read 2 more answers
Which example best represents translational kenetic energy
Mila [183]

Answer:

an apple falling off a tree

Explanation:

5 0
2 years ago
A girl rides her scooter to school, a total distance of 4.5km. She has to slow down twice to cross busy streets, but overall the
Whitepunk [10]

Answer:

6.93 km/h

Explanation:

To calculate her average speed, we need the "speed" formula, which is:

average speed = distance / time

You plug in your numbers and it will give you the answer.

Speed = 4.5km/0.65hr

           = 6.923 km/h

8 0
3 years ago
Read 2 more answers
We can model a pine tree in the forest as having a compact canopy at the top of a relatively bare trunk. Wind blowing on the top
notka56 [123]

Answer:

A,)FD= 114.1N

B)Torque=798.5Nm

Explanation:

We can model a pine tree in the forest as having a compact canopy at the top of a relatively bare trunk. Wind blowing on the top of the tree exerts a horizontal force, and thus a torque that can topple the tree if there is no opposing torque. Suppose a tree's canopy presents an area of 9.0 m^2 to the wind centered at a height of 7.0 m above the ground. (These are reasonable values for forest trees.)

If the wind blows at 6.5 m/s, what is the magnitude of the drag force of the wind on the canopy? Assume a drag coefficient of 0.50 and the density of air of 1.2 kg/m^3

B)What torque does this force exert on the tree, measured about the point where the trunk meets the ground?

A)The equation of Drag force equation can be expressed below,

FD =[ CD × A × ρ × (v^2/ 2)]

Where CD= Drag coefficient for cone-shape = 0.5

ρ = Density

Area of of the tree canopy = 9.0 m^2

density of air of = 1.2 kg/m^3

V= wind velocity= 6.5 m/s,

If we substitute those values to the equation, we have;

FD =[ CD × A × ρ × (v^2/ 2)]

F= [ 0.5 × 9.0 m^2 × 1.2 kg/m^3 ( 6.5 m/s/ 2)]

FD= 114.1N

B) the torque can be calculated using below formula below

Torque= (Force × distance)

= 114.1 × 7

= 798.5Nm

8 0
3 years ago
Other questions:
  • A car parked on level pavement exerts a force of 10,000 newtons on the ground. What force does the pavement exert back on the ca
    8·1 answer
  • A family pool holds 10,000 gallons of water how many cubic meters is this
    13·2 answers
  • Imagine that you work for a conservation organization. Your job is to make recommendations to restore an area of a prairie that
    13·1 answer
  • A 25.0 kg bag of peat moss sits in the back of a flatbed truck, driving up a hill. The bag experiences a 225N normal force. The
    14·1 answer
  • How do you find density of a liquid
    10·1 answer
  • What is dark matter consisted of?
    11·2 answers
  • 4. Someone took the last cookie in the cookie jar last night. The LAST
    9·1 answer
  • Select the correct answer.
    7·1 answer
  • What is so soothing about the ocean? And why are some people afraid of the ocean?
    9·2 answers
  • 1. What type of waves can only travel through a medium?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!