Answer:
Explanation:
Length if the bar is 1m=100cm
The tip of the bar serves as fulcrum
A force of 20N (upward) is applied at the tip of the other end. Then, the force is 100cm from the fulcrum
The crate lid is 2cm from the fulcrum, let the force (downward) acting on the crate be F.
Using moment
Sum of the moments of all forces about any point in the plane must be zero.
Let take moment about the fulcrum
100×20-F×2=0
2000-2F=0
2F=2000
Then, F=1000N
The force acting in the crate lid is 1000N
Option D is correct
Answer:
The solution is attached in the pictures below
Explanation:
Answer:
ω₂=1.20
Explanation:
Given that
mass of the turn table ,M= 15 kg
mass of the ice ,m= 9 kg
radius ,r= 25 cm
Initial angular speed ,ω₁ = 0.75 rad/s
Initial mass moment of inertia



Final mass moment of inertia



Lets take final speed of the turn table after ice evaporated =ω₂ rad/s
Now by conservation angular momentum
I₁ ω₁ =ω₂ I₂

ω₂=1.20
Answer:-2.86*10⁻⁴
Explanation: Use the equation change in volume = (change in pressure * original volume) / Bulks Modulus. ΔV = (-Δp*V₀) / B
Plugging in your numbers, you should get ΔV = (-2.29*10⁷*1) / (8*10¹⁰) = -2.86*10⁻⁴
ΔP = P₂-P₁ ----> ΔP = 2.30*10⁷ - 1.00*10⁵ = 2.29*10⁷