Answer:

Explanation:
Hello,
In this case, since the hockey puck was moving at 34 m/s and suddenly stopped (final velocity is zero) in 7 seconds, we can first compute the acceleration via:

In such a way, we can compute the displacement via:

Best regards.
Answer:
Explanation:
A ball is thrown vertically upward with a certain Kinetic Energy in the absence of air resistance and while returning it experiences air resistance.
Air resistance causes the ball to lose its kinetic energy as it provides resistance which will convert some of its kinetic energy to heat energy.
So in a way total energy is conserved but not kinetic energy as some portion of it is lost in the form of heat.
Answer:
f =1 10⁸ Hz
Explanation:
The speed of an electromagnetic wave is given by
c = Lam f
In our case, the wavelength is 3.0 m, so we can clear the frequency
f = c / Lam
f = 3 108/3.
f =1 10⁸ Hz
Fresnel and Fraunhofer diffraction. Fresnel diffraction is produced when light from a point source meets an obstacle, the waves are spherical and the pattern observed is a fringed image of the object. Fraunhofer diffraction occurs with plane wave-fronts with the object effectively at infinity. The pattern is in a particular direction and is a fringed image of the source.