Answer:
![[Cl^-]=232.3\frac{mgCl^-}{L}](https://tex.z-dn.net/?f=%5BCl%5E-%5D%3D232.3%5Cfrac%7BmgCl%5E-%7D%7BL%7D)
Explanation:
Hello,
In this case, we can represent the chemical reaction as:

In such a way, since the mass of the obtained silver chloride is 93.9 mg, we can compute the chloride ions in the ground water by using the following stoichiometric procedure whereas the molar mass of chloride ions and silver chloride are 35.45 g/mol and 143.32 g/mol respectively:

Finally, for the given volume of water in liters (0.100L), we compute the required concentration:
![[Cl^-]=\frac{23.2mgCl^-}{0.100L}\\](https://tex.z-dn.net/?f=%5BCl%5E-%5D%3D%5Cfrac%7B23.2mgCl%5E-%7D%7B0.100L%7D%5C%5C)
![[Cl^-]=232.3\frac{mgCl^-}{L}](https://tex.z-dn.net/?f=%5BCl%5E-%5D%3D232.3%5Cfrac%7BmgCl%5E-%7D%7BL%7D)
Best regards.
Answer:
1) The rate of the overall reaction = Δ[N₂O]/Δt = 0.015 mol/L.s.
2) The rate of change for NO = - Δ[NO]/Δt = 3 Δ[N₂O]/Δt = 0.045 mol/L.s.
Explanation:
<em>3NO(g) → N₂O(g) + NO₂(g).</em>
The rate of the reaction = -1/3 Δ[NO]/Δt = Δ[N₂O]/Δt = Δ[NO₂]/Δt.
Given that: Δ[N₂O]/Δt = 0.015 mol/L.s.
<em>1) The rate of the overall reaction is?</em>
The rate of the overall reaction = Δ[N₂O]/Δt = 0.015 mol/L.s.
<em>2) The rate of change for NO is?</em>
The rate of change for NO = - Δ[NO]/Δt.
∵ -1/3 Δ[NO]/Δt = Δ[N₂O]/Δt.
<em>∴ The rate of change for NO = - Δ[NO]/Δt = 3 Δ[N₂O]/Δt </em>= 3(0.015 mol/L.s) = <em>0.045 mol/L.s.</em>
Answer: Poing Reyes
Explanation: the other options are incorrect as they have been used as astronomical observatory
Sorry I’m only answering so I could upload
One thing that you can use with gold is electronics and jewelry