The balanced equation for the reaction between Mg and HCl is as follows
Mg + 2HCl --> MgCl₂ + H₂
stoichiometry of HCl to H₂ is 2:1
number of HCl moles reacted - 0.400 mol/L x 0.100 L = 0.04 mol of HCl
since Mg is in excess HCl is the limiting reactant
number of H₂ moles formed - 0.04/2 = 0.02 mol of H₂
we can use ideal gas law equation to find the volume of H₂
PV = nRT
where
P - pressure - 1 atm x 101 325 Pa/atm = 101 325 Pa
V - volume
n - number of moles - 0.02 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature in Kelvin - 0 °C + 273 = 273 K
substituting these values in the equation
101 325 Pa x V = 0.02 mol x 8.314 Jmol⁻¹K⁻¹ x 273 K
V = 448 x 10⁻⁶ m³
V = 448 mL
therefore answer is
c. 448 mL
Answer: both are solid at room temperture
Explanation:
Answer:
2.33g of iron (iii) chloride
50.0 mL of 5.00 M of sodium phosphate
FeCl3 + Na3PO4 > Fe(PO4) + 3NaCl
mol = conc × vol = 0.5 × 50/1000 = 0.025 mol Na3PO4
from the equation:
1 mol of Na3PO4 reacts with 1 mol FeCl3 = 3 mol of NaCl
0.025 mol = x
x = 0.0025 × 3 = 0.075 mol NaCl
mass = 0.075 g × 59 g/mol = 4.425 g NaCl
i guessed all of this so i dont know i it is correct