Answer:
~1.417M
Explanation:
Molarity=(number of moles of solute)/(litres of solution)
In this case, we need to find moles of potassium bromide.
Mass=25.3g
Molar mass= 119g/mol
moles=(mass/molar mass)
=(25.3)/(119)
=0.2126moles of potassium bromide
Molarity=(0.2126)/(150/1000)
~1.417M
Hope this helps:)
People had asked this many times and that is why they came up with methods and standards that will answer these type of questions. You can look it up in the NIST or the National Institute for Standards and Technology.
D- Physical
Explanation:
A physical property is anything that has characteristics associated with a change in it's chemical composition
Answer:
At STP, 760mmHg or 1 atm and OK or 273 degrees celcius
Explanation:
The standard temperature and pressure is the temperature and pressure at which we have the molecules of a gas behaving as an ideal gas. At this temperature and pressure, it is expected that the gas exhibits some properties that make it behave like an ideal gas.
This temperature and pressure conform some certain properties on a gas molecule which make us say it is behaving like an ideal gas. Ordinarily at other temperatures and pressures, these properties are not obtainable
Take for instance, one mole of a gas at stp occupies a volume of 22.4L. This particular volume is not obtainable at other temperatures and pressures but at this particular temperature and pressure. One mole of a gas will occupy this said volume no matter its molar mass and constituent elements. This is because at this temperature and pressure, the gas is expected to behave like an ideal gas and thus exhibit the characteristics which are expected of an ideal gas
Answer:
Weathering, Erosion
Explanation:
Plants and animals can be agents of mechanical weathering. The seed of a tree may sprout in soil that has collected in a cracked rock. As the roots grow, they widen the cracks, eventually breaking the rock into pieces. Over time, trees can break apart even large rocks.
Tree root systems have a handful of large roots that branch out into a network of smaller roots that often extend out far beyond their branches do. These root systems prevent erosion by holding the soil in place and improving drainage which helps water get absorbed into the soil instead of just running over the top.
Hope this helps
All the love, Ya boi Fraser :)