Answer:
a)
b)
Explanation:
Let the first ball throw be the point of reference, we can have following the equation of motion:
1st ball: 
2nd ball: 
a)When the 2 balls collide they are at the same spot at the same time:




b) The first ball is at its highest point when v = 0. That is

After this time, the 2 balls would have traveled through a distance of


Since
we can solve for H

Let's see what variables we've got first. Hmmm. We have:
Displacement, d = 28 m
Time taken, t = 11 s
Initial velocity, u = 0 m/s (at rest)
And now we need to find the final velocity, v. Among the 4 (or 5) equations of motions, there's no equation that will let us simply plug in the values and give an answer sigh. But fear not! We'll do it in steps.
I'm going to pick one of the motion equation to find more information:

I know everything except for a in this one, so I I'll use this! After plugging in values, I get a = 0.4628 m/s^2.
Now I'm going to use another motion equation that has v in it because that needs to be solved!

Now I know everything except dial velocity v. Nice!
v = 0 + (0.4628)(11)
Machine cycle. The four steps which the CPU carries out for each machine language instruction: fetch, decode<span>, execute, and store. hope that helped</span>
Momentum is conserved throughout this scenario.
Before the man does anything, the total momentum of him and his book is zero. So we know that it'll be zero after he throws the book.
Momentum = (mass) x (velocity)
The man gives the book (1.2 kg)x(10 m/s north) = 12 kg-m/s north
of momentum.
Since the total momentum must be zero, the man himself picks up 120 kg-m/s of momentum south.
(his mass)x(his v) = 120 kg-m/s south = (770 kg-m/s^2/9.8 m/s^2)x(V).
His velocity southward = (120 x 9.8) / (770) m/s .
He needs to reach the shore 10m away.
Time = distance/speed
= (10 x 770) / (120 x 9.8) seconds
= 6.55 seconds
Northward
1810-1050=760
Accelerate 760 towards northward