Answer:
a = - 50 [m/s²]
Explanation:
To solve this problem we simply have to replace the values supplied in the given equation.
Vf = final velocity = 0.5 [m/s]
Vi = initial velocity = 10 [m/s]
s = distance = 100 [m]
a = acceleration [m/s²]
Now replacing we have:
![(0.5)^{2}-(10)^{2} = 2*a*(100)\\0.25-10000=200*a\\200*a=-9999.75\\a =-50 [m/s^{2} ]](https://tex.z-dn.net/?f=%280.5%29%5E%7B2%7D-%2810%29%5E%7B2%7D%20%3D%202%2Aa%2A%28100%29%5C%5C0.25-10000%3D200%2Aa%5C%5C200%2Aa%3D-9999.75%5C%5Ca%20%3D-50%20%5Bm%2Fs%5E%7B2%7D%20%5D)
The negative sign of acceleration means that the ship slows down its velocity in order to land.
The current that would pass through the 30 ohms resistor is 2 A.
<h3>What is electric current?</h3>
Electric current is the rate of flow of electric charge round a conductor.
To calculate the electric current that would pass through the 30 ohms resistor, we use the formula below
Formula:
- I = V/Rt........... Equation 1
Where:
- I = Electric current passing through the 30 ohms resistor
- V = Voltage
- Rt = Total or effective resistance of the resistors.
From the question,
Given:
- V = 100 volts
- Rt = (30+20) ohms (since both resistors are connected in series)
Substitute these values into equation 1
Hence, The current that would pass through the 30 ohms resistor is 2 A.
Learn more about electric current here: brainly.com/question/1100341
charge = current x time = 0.5x 20=10Coulombs
Answer:
R = 28.125 ohms
Explanation:
Given that,
The voltage of a bulb, V = 4.5 V
Current, I = 0.16 A
We need to find the resistance of the filament. Using Ohm's law,
V = IR
Where
R is the resistance of the filament
So,

So, the resistance of the filament is equal to 28.125 ohms.