Answer:
No, the 50 ohm and 100 ohm resistor will not continue to operate.
Explanation:
A closed circuit is the circuit in which there is no break between the negative and the positive end of the battery.
When in this, combinational circuit the 80 ohm resistor fail then there will not any continue supply of current in the circuit due to the breakage because the electron will flow from negative end of the battery to positive end if their is no breaking in the circuit.
Therefore the 50 ohm and 100 ohm circuit will not continue to operate because of the breaking of the circuit and current will not flow.
When is at the end of the runway the velocity of the plane is given by the equation

where s=1800 m is the runway length. Thus
At half runway the velocity of the plane is

Therefore at midpoint of runway the percentage of takeoff velocity is
‰
There are two equal forces of gravity between the Earth and the Moon.
One force pulls the Moon toward the Earth.
The other force pulls the Earth toward the Moon.
If only this gravity suddenly switched off, then the moon would
continue to orbit the Sun, very much as it does now.
If ALL gravity suddenly switched off, then . . .
-- the Moon would stop orbiting the Earth and would sail away, in
a straight line and at the speed it had when gravity disappeared;
-- the Earth would stop orbiting the Sun and would sail away, in
a straight line and at the speed it had when gravity disappeared;
-- all the gases surrounding the Earth ... which we call "air" ... would
start drifting away, and expanding into a giant cloud of gas, and stop
being an atmosphere;
-- the Sun would completely fall apart, expand into a giant cloud of gas,
and stop being a star.
Answer:Increase
Explanation:
Given
You are holding 2 kg mass in each outstreched hand
If the masses are dropped then Moment of inertia will decease by 
Where m=2 kg
r=length of stretched arm
Since angular momentum is conserved therefore decrease in Moment of inertia will result in increase of angular velocity
as I
=constant
I=Moment of inertia
=angular velocity