1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hunter-Best [27]
3 years ago
8

A friend rides, in turn, the rims of three fast merry-go-rounds while holding a sound source that emits isotropically at a certa

in frequency. You stand far from each merry-go-round. The frequency you hear for each of your friend's three rides varies as the merry-go-round rotates. The variations in frequency for the three rides are given by the three curves in Fig. 17.5. Rank the curves according to (a) the linear speed of the sound source, (b) the angular speeds of the merry-go-rounds, and (c) the radii r of the merry-go-rounds, greatest first.

Physics
1 answer:
Aliun [14]3 years ago
5 0

Complete Question

The complete question is shown on the first uploaded image

Answer:

a

The Ranking of the curve according to their speed would be equal Rank because    v_1 =v_2 =v_3

b

 The first frequency would have a higher rank compared to the other two which will have the same ranking when ranked with respect to their angular velocities because

                                w_1 >w_2 = w_3  

c

The ranking of  the second third frequency would be the same but their ranking would be greater than that of the first frequency because

                          r_2 =r_3 >r_1

Explanation:

Mathematically Frequency can be represented as

                         F = \frac{v}{\lambda}

Where \lambda is the wavelength and v is the velocity

   Now looking at the diagram we see that

          For the  first frequency we have

             Let the wavelength be  \lambda_1 = \lambda , and the frequency  F_1 = F

           For  the second frequency

           Let the wavelength be  \lambda_2 = 2 \lambda , and the frequency F_2 = \frac{F}{2}

           For  the third frequency

           Let the wavelength be  \lambda_3 = 2\lambda ,  and the frequency F_3 = \frac{F}{2}

To obtain v for each of the frequency we make v the subject in the equation above for each frequency

  So,

        For the  first frequency we have

                                 v_1 = \lambda_1 F_1 = \lambda F

          For  the second frequency

                               v_2 = \lambda_2 F_2 = 2 \lambda*\frac{F} {2} = \lambda F      

           For  the third frequency

                               v_3 = \lambda_3 F_3 = 2 \lambda*\frac{F} {2} = \lambda F

Hence

The Ranking of the curve according to their speed would be equal Rank because    v_1 =v_2 =v_3

 Mathematically angular speed can be represented as

                           w = 2 \pi f

   For the  first frequency we have

                          w_1 = 2\pi F_1 = 2 \pi F                        

    For  the second frequency

                        w_2 = 2 \pi F_2 = 2 \pi \frac{F}{2}  = \pi F

     For  the third frequency

                      w_3 = 2 \pi F_3 = 2 \pi \frac{F}{2}  = \pi F  

 Hence

          The first frequency would have a higher rank compared to the other two which will have the same ranking when ranked with respect to their angular velocities because

                                w_1 >w_2 = w_3  

Mathematically the relationship between the angular velocity and the linear velocity can be represented as

                            v = wr

                    =>    r = \frac{v}{w}

 Since the linear velocity is constant we have that

                            r \  \alpha \  \frac{1}{w}

This means that r varies inversely to the angular velocity ,What this means for ranking due to the radius is that the ranking of  the second third frequency would be the same but their ranking would be greater than that of the first frequency because

                          r_2 =r_3 >r_1

       

You might be interested in
What is the relationship between temperature and altitude in the stratosphere? (2 points).
stealth61 [152]
As altitude increases, temperature increases. The stratosphere is the part of the atmosphere that starts in the tropopause and ends in the estratopause. In the troposphere, the air is close to the Earth surface. The air surface can absorb more sunlight energy than the air, so the Earth surface heats the air. As you go higher, the distance to the Earth surface is higher, so the temperature is lower. The troposphere ends in the tropopause, where this trend changes. In the estratopause, there is a lot of ozone, which absorbs the dangerous UV radiation and converts into heat. That heat warms the air. So the air which is close to the estratopause is warm because of the heat released by the ozone reactions. The tropopause is far from the Earth surface and far from the ozone layer, that’s why it is cold. So the tropopause is cold and the estratopause is warm, which means: the air becomes warmer <span>as you rise above the tropopause until you get to the estratopause.</span>
8 0
3 years ago
Which model best represents a pattern?
balandron [24]
The water cycle because <span>the cycle of processes by which water circulates between the earth's oceans, atmosphere, and land, involving precipitation as rain.

it is like a pattern

hope that was helpful.</span>
3 0
3 years ago
Read 2 more answers
The magnitude of the electric current is directly proportional to the _____________ of the electric field.
MatroZZZ [7]

Answer;

the potential difference

The magnitude of the electric current is directly proportional to the potential difference of the electric field

Explanation;

An electric current results from the collective movement of free charges under the effect of an electric field. An electric field exists and can be observed in the space around a single charge or a number of charges.

Electric fields cause charges to move. It stands to reason that an electric field applied to some material will cause currents to flow in that material. In other words, the current density is directly proportional to the electric field. The constant of proportionality σ is called the material’s conductivity.

8 0
3 years ago
Read 2 more answers
If a boulder has a weight of 675,000 N what is it’s mass
Anarel [89]

Weight = (mass) x (acceleration of gravity where the object is)

You didn't tell us WHERE the boulder is, so I have to assume that it's on Mars, where the acceleration of gravity is 3.71 m/s².

675,000 N = (mass) (3.71 m/s²)

Mass = (675,000 N) / (3.71 m/s²)

<em>Mass = 181,941 kilograms</em>

The same weight on Earth would suggest a mass of only 68,807 kg, so you can see how important it is to know where you are when you make your measurements.

6 0
3 years ago
Three point charges are placed on the x−y plane: a + 50.0-nC charge at the origin, a −50.0-nC charge on the x axis at 10.0 cm, a
butalik [34]

Answer:

(a) F = 0.00322i - 0.00793j with magnitude |F| = 0.00856N

(b) E = -42846.7 N/C

Explanation:

The diagram attached below explains some parameters.

Parameters given:

Charge Q1 = +50 nC at point (0, 0)

Charge Q2 = -50 nC at point (0.1, 0)

Charge Q3 = +150 nC at point (0.1, 0.08)

* The distances are in meters.

(a) The total electric force on the charge Q3 due to Q1 and Q2 is the vector sum of the forces due to Q1 and Q2. Mathematically,

F = F1 + F2

FORCE DUE TO Q1 i.e. F(Q1, Q3)

We have to find the x and y components.

From the diagram, we can find θ using SOHCAHTOA:

θ = tan⁻¹ (0.08/0.1)

θ = 38.66⁰

The distance between Q1 and Q3 can be found using Pythagoras theorem:

x² = 0.08² + 0.1²

x = 0.128 m

F1 = Fx(Q1, Q3)i + Fy(Q1, Q3)j

F1 = iF(Q1, Q3)cosθ + jF(Q1, Q3)sinθ

F(Q1, Q3) = (k * Q1 * Q3) / r²

k = Coulombs constant

F(Q1, Q3) = (9 * 10⁹ * 50 * 10⁻⁹ * 150 * 10⁻⁹) /(0.128)²

F(Q1, Q3) = 0.00412N

F1 = i0.00412 * cos38.66 + j0. 00412 * sin38.66

F1 = 0.00322i + 0.00257j N

FORCE DUE TO Q2 i.e. F(Q2, Q3)

We have to find the x and y components.

F2 = Fx(Q2, Q3)i + Fy(Q2, Q3)j

F2 = iF(Q2, Q3)cos90 + jF(Q2, Q3)cos0

F(Q2, Q3) = (k * Q2 * Q3) / r²

F(Q2, Q3) = (9 * 10⁹ * -50 * 10⁻⁹ * 150 * 10⁻⁹) /(0.08)²

F(Q2, Q3) = -0.0105N

F2 = -i0.0105 * cos90 - j0.0105 * cos0

F2 = - 0.0105j N

Hence, the total force will be

F = F1 + F2

F = 0.00322i + 0.00257j - 0.0105j

F = 0.00322i - 0.00793j N

The magnitude of this force is:

|F| = √(0.00322² + (-0.00793²)

|F| = 0.00856N

(b) The electric field at charge Q3 is the sum of the electric fields due to Q1 and Q2:

E = E1 + E2

E1, electric field due to Q1 = kQ1/r²

E1 = (9 * 10⁹ * 50 * 10⁻⁹) / (0.128²)

E1 = 27465.8 N/C

E2, electric field due to Q2 = (9 * 10⁹ * -50 * 10⁻⁹) / (0.08²)

E1 = -70312.5N/C

The total electric field:

E = E1 + E2

E = 27465.8 - 70312.5

E = -42846.7 N/C

3 0
3 years ago
Other questions:
  • A stone is thrown upward at an angle. what happens to the horizontal component of its velocity as it rises? as it falls?
    13·1 answer
  • Which is NOT a property of magnetic field lines?
    6·2 answers
  • How does Photosynthesis use solar energy?
    6·1 answer
  • A hockey puck is pushed by a stick with a force of 750 newtons. The puck travels 2.0 meters in 0.30 seconds. How powerful is the
    10·2 answers
  • A circular loop (radius of 20 cm) is in a uniform magnetic field of 0.15 T. What angle(s) between the normal to the plane of the
    8·1 answer
  • One of the predicted problems due to global warming is that ice in the polar ice caps will melt and raise sea level everywhere i
    13·1 answer
  • If a body having mass 40kg started moving initially with rest and it takes a velocity of 20m/sec in time 4 seconds. Find the val
    8·1 answer
  • A frequency generator sends a 550Hz sound wave through both water and ice. What is the difference in wavelength between the wave
    10·1 answer
  • *NEED THIS ANSWERED ASAP*
    9·1 answer
  • The speed of an object doubles.How does the change in the magnitude of the objects
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!