1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hunter-Best [27]
3 years ago
8

A friend rides, in turn, the rims of three fast merry-go-rounds while holding a sound source that emits isotropically at a certa

in frequency. You stand far from each merry-go-round. The frequency you hear for each of your friend's three rides varies as the merry-go-round rotates. The variations in frequency for the three rides are given by the three curves in Fig. 17.5. Rank the curves according to (a) the linear speed of the sound source, (b) the angular speeds of the merry-go-rounds, and (c) the radii r of the merry-go-rounds, greatest first.

Physics
1 answer:
Aliun [14]3 years ago
5 0

Complete Question

The complete question is shown on the first uploaded image

Answer:

a

The Ranking of the curve according to their speed would be equal Rank because    v_1 =v_2 =v_3

b

 The first frequency would have a higher rank compared to the other two which will have the same ranking when ranked with respect to their angular velocities because

                                w_1 >w_2 = w_3  

c

The ranking of  the second third frequency would be the same but their ranking would be greater than that of the first frequency because

                          r_2 =r_3 >r_1

Explanation:

Mathematically Frequency can be represented as

                         F = \frac{v}{\lambda}

Where \lambda is the wavelength and v is the velocity

   Now looking at the diagram we see that

          For the  first frequency we have

             Let the wavelength be  \lambda_1 = \lambda , and the frequency  F_1 = F

           For  the second frequency

           Let the wavelength be  \lambda_2 = 2 \lambda , and the frequency F_2 = \frac{F}{2}

           For  the third frequency

           Let the wavelength be  \lambda_3 = 2\lambda ,  and the frequency F_3 = \frac{F}{2}

To obtain v for each of the frequency we make v the subject in the equation above for each frequency

  So,

        For the  first frequency we have

                                 v_1 = \lambda_1 F_1 = \lambda F

          For  the second frequency

                               v_2 = \lambda_2 F_2 = 2 \lambda*\frac{F} {2} = \lambda F      

           For  the third frequency

                               v_3 = \lambda_3 F_3 = 2 \lambda*\frac{F} {2} = \lambda F

Hence

The Ranking of the curve according to their speed would be equal Rank because    v_1 =v_2 =v_3

 Mathematically angular speed can be represented as

                           w = 2 \pi f

   For the  first frequency we have

                          w_1 = 2\pi F_1 = 2 \pi F                        

    For  the second frequency

                        w_2 = 2 \pi F_2 = 2 \pi \frac{F}{2}  = \pi F

     For  the third frequency

                      w_3 = 2 \pi F_3 = 2 \pi \frac{F}{2}  = \pi F  

 Hence

          The first frequency would have a higher rank compared to the other two which will have the same ranking when ranked with respect to their angular velocities because

                                w_1 >w_2 = w_3  

Mathematically the relationship between the angular velocity and the linear velocity can be represented as

                            v = wr

                    =>    r = \frac{v}{w}

 Since the linear velocity is constant we have that

                            r \  \alpha \  \frac{1}{w}

This means that r varies inversely to the angular velocity ,What this means for ranking due to the radius is that the ranking of  the second third frequency would be the same but their ranking would be greater than that of the first frequency because

                          r_2 =r_3 >r_1

       

You might be interested in
All atoms of an element have the same number of__But within the same element there may exist atoms that have__numbers of__.Atoms
Elza [17]

Answer:

isotopes

Explanation:

3 0
3 years ago
Wyatt is moving a box with a mass of 37 kg a distance of 37 meters. Wyatt did 360 J of work in 2 minutes when moving the box. Wh
pentagon [3]
His power output was 3 Watt (360 Joule/120 seconds). The power output can be calculated by dividing the quantity of work by the amount of second needed for the activity and also by multiplying the force amount with the velocity of the activity. The power output usually used for measuring the ability of machine for doing its job.
7 0
3 years ago
Read 2 more answers
A firecracker breaks up into two pieces , one has a mass of 200 g and files off along the x –axis with a speed of 82.0 m/s and t
Readme [11.4K]

Answer:

A) 21.2 kg.m/s at 39.5 degrees from the x-axis

Explanation:

Mass of the smaller piece = 200g = 200/1000 = 0.2 kg

Mass of the bigger piece = 300g = 300/1000 = 0.3 kg

Velocity of the small piece = 82 m/s

Velocity of the bigger piece = 45 m/s

Final momentum of smaller piece = 0.2 × 82 = 16.4 kg.m/s

Final momentum of bigger piece = 0.3 × 45 = 13.5 kg.m/s

since they acted at 90oc to each other (x and y axis) and also momentum is vector quantity; then we can use Pythagoras theorems

Resultant momentum² = 16.4² + 13.5² = 451.21

Resultant momentum = √451.21 = 21.2 kg.m/s at angle 39.5 degrees to the x-axis  ( tan^-1 (13.5 / 16.4)

5 0
3 years ago
Which of the following is one of the three main fuels that a star uses for fusion
Colt1911 [192]
Hydrogen, helium, and carbon.
8 0
3 years ago
Read 2 more answers
What happens to acceleration if forces are balanced
Vikentia [17]

Answer:

No acceleration.

Explanation:

If the forces are Balanced it means they are in equilibrium and there will be  no net force, therefore the object will not accelerate and the velocity will remain constant.

5 0
4 years ago
Read 2 more answers
Other questions:
  • Two tuning forks are played at the same time. One has a frequency of 176 Hz and the other is 178 Hz. How many beats per second a
    7·1 answer
  • Light from a laser of wavelength λ1 shines normally on a pair of narrow slits separated by distance D. This results in a differe
    15·1 answer
  • In the model of the hydrogen atom due to Niels Bohr, the electron moves around the proton at a speed of 3.3 × 106 m/s in a circl
    11·1 answer
  • A mirage is created when light is refracted ___.
    12·2 answers
  • How much time is needed to push a 5,000 N car 50 meters if you are using a machine with a power of 4,500 W?
    7·1 answer
  • A hiker walks 7.45 m, N and 2.50 m. E. What is the magnitude of his resultant
    13·1 answer
  • A car travels at a constant speed around a circular track whose radiu is 2.6 km. The goes once arond the track in 360s . What is
    9·1 answer
  • Jesse celebrated his birthday yesterday by eating a giant birthday cake with 17 candles. What type of energy conversion ocurred
    15·1 answer
  • what type of simple machine is shown in the diagram?write the length and height of slope in it. Please help ASAP!!!​
    15·2 answers
  • imagine you are outside enjoying the warm sunshine with friends. as you briefly glance up at the sun, the part of the sun that y
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!