Answer:
V = 6.65 [volt]
Explanation:
First, we must calculate the power by means of the following equation, where the voltage is related to the energy produced or consumed in a given time.
![P=E/t\\P = 40/30\\P = 1.33[s]](https://tex.z-dn.net/?f=P%3DE%2Ft%5C%5CP%20%3D%2040%2F30%5C%5CP%20%3D%201.33%5Bs%5D)
Using the power we can calculate the voltage, by means of the following equation that relates the voltage to the current.

where:
V = voltage [Volts]
I = current = 200 [mA] = 0.2 [A]
![V = 1.33/0.2\\V = 6.65 [volt]](https://tex.z-dn.net/?f=V%20%3D%201.33%2F0.2%5C%5CV%20%3D%206.65%20%5Bvolt%5D)
Answer:
33.33 rad / s
Explanation:
Linear velocity = 35 m/s
Radius = 1.05 m
The relation between the linear velocity and the angular velocity is given by
Linear velocity = radius × angular velocity
Angular velocity = linear velocity / radius
Angular velocity = 35 / 1.05
= 33.33 rad/ s
Answer:
Transverse waves are always characterized by particle motion being perpendicular to wave motion. A longitudinal wave is a wave in which particles of the medium move in a direction parallel to the direction that the wave moves.
Explanation:
The movement of the medium is different. In the longitudinal wave, the medium moves left to right, while in thee transverse wave, the medium moves vertically up and down. Longitudinal waves have a compression and rarefaction, while the transverse wave has a crest and a trough. Longitudinal waves have a pressure variation, transverse waves don't have pressure variation. Longitudinal waves can be propagated in solids, liquids and gases, transverse waves can only be propagated in solids and on the surfaces of liquids. Longitudinal waves have a change in density throughout the medium, transverse waves don't.
Is isn't a stream or rushing water. Or something like that?