Answer:
66.48% of full-term babies are between 19 and 21 inches long at birth
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean length of 20.5 inches and a standard deviation of 0.90 inches.
This means that 
What percentage of full-term babies are between 19 and 21 inches long at birth?
The proportion is the p-value of Z when X = 21 subtracted by the p-value of Z when X = 19. Then
X = 21



has a p-value of 0.7123
X = 19



has a p-value of 0.0475
0.7123 - 0.0475 = 0.6648
0.6648*100% = 66.48%
66.48% of full-term babies are between 19 and 21 inches long at birth
Answer:
L= A/WH
Step-by-step explanation:
Off topic Btw it reminds me of area = length * width/height
The answer is 5-3/2x. Hope this helps :)
We have that
y=x²----> equation 1<span>
y=x+2-----> equation 2
multiply equation 1 by -1
-y=-x</span>²
add equation 1 and equation 2
-y=-x²
y=x+2
------------
0=-x²+x+2-------------> -x²+x+2=0-----> x²-x-2=0
Group terms that contain the same variable, and move the
constant to the opposite side of the equation
(x²-x)=2
<span>Complete
the square. Remember to balance the equation by adding the same constants
to each side
</span>(x²-x+0.5²)=2+0.5²
Rewrite as perfect squares
(x-0.5)²=2+0.5²
(x-0.5)²=2.25-----> (x-0.5)=(+/-)√2.25-----> (x-0.5)=(+/-)1.5
x1=1.5+0.5-----> x1=2
x2=-1.5+0.5---- > x2=-1
for x=2
y=x²----> y=2²----> y=4
the point is (2,4)
for x=-1
y=x²----> y=(-1)²---> y=1
the point is (-1,1)
the answer isthe solution of the system are the points(2,4) and (-1,1)