Hypertonic solution means the solution with a lower water potential than the cell cytoplasm, such as salt water.
When the red blood cell is put into it, since the cell has a higher water potential than the solution, water molecules will flow from the cell back into the water due to osmosis.
Osmosis is always where water molecules flow from a region of higher water potential to lower, through a semi permeable membrane (Whcih is the red blood cell membrane in this case.)
Since water flowed out of the cell, the cell lose water and shrinks.
Hypotonic solution is where the solution that has a higher water potential than the cell cytoplasm.
So when the red blood cell is put in that solution, the water will flow from the solution into the cell this time, by osmosis.
The red blood cell will then gain so much water that the cell membrane cannot hold all and therefore burst.
<span>A. can start in many different places on a sequence at the same time. </span>
Answer:
<u>-blue and red light</u>
Explanation:
Plants produce sugars or carbohydrates during the process of photosynthesis. They absorb light energy from the electromagnetic spectrum with pigments within the thylakoid membrane, like chlorophyll a, chlorophyll b.
Chlorophylls are made of ringed molecules chlorine, a hydrogenated form of porphyrin with a magnesium ion bonded to four atoms of nitrogen. Chlorophyll a shows the most absorption of red light (642 nm) and blue light (372 nm); while chlorophyll b shows the most absorption at 626 nm and 392 nm.
Different types of chlorophyll sidechains change the molecules' absorption ranges; A's methyl group is bound at carbon 7, B's aldehyde (CHO) ring is bound at carbon 7. Both absorb light from orange-red and violet-blue wavelengths. As such, the best light wavelengths for photosynthesis are within the blue and red wavelengths (425–450 nm) and (600–700 nm).