Answer: yes
Step-by-step explanation:
Answer: -35+24p
Step by step in picture below
Answer:
Center: 
Radius: 
Step-by-step explanation:
It is necessary to remember that the Equation of the circle in Center-radius form, is:

Where the center of the circle is at the point (h, k) and the radius is "r".
Then, given the following equation of the circle:

We can notice that it is written in Center-radius form. Then we can identify that:

Therefore the center is:

And the radius is:

Answer:
The product of the slopes of lines is -1.
i.e. m₁ × m₂ = -1
Thus, the lines are perpendicular.
Step-by-step explanation:
The slope-intercept form of the line equation

where
Given the lines
y = 2/3 x -3 --- Line 1
y = -3/2x +2 --- Line 2
<u>The slope of line 1</u>
y = 2/3 x -3 --- Line 1
By comparing with the slope-intercept form of the line equation
The slope of line 1 is: m₁ = 2/3
<u>The slope of line 2</u>
y = -3/2x +2 --- Line 2
By comparing with the slope-intercept y = mx+b form of the line equation
The slope of line 2 is: m₂ = -3/2
We know that when two lines are perpendicular, the product of their slopes is -1.
Let us check the product of two slopes m₁ and m₂
m₁ × m₂ = (2/3)(-3/2
)
m₁ × m₂ = -1
Thus, the product of the slopes of lines is -1.
i.e. m₁ × m₂ = -1
Thus, the lines are perpendicular.