Answer:

Explanation:
![\rm MX(s) $\, \rightleftharpoons \,$ M$^{+}$(aq) + $^{-}$(aq); $K_{\text{sp}}$ = [M$^{+}$][X$^{-}$]\\\\\text{$K_{\text{sp}}$ gives us information on}\\\\\boxed{\textbf{ the equilibrium between the solid and its ions in solution}}](https://tex.z-dn.net/?f=%5Crm%20MX%28s%29%20%24%5C%2C%20%5Crightleftharpoons%20%5C%2C%24%20M%24%5E%7B%2B%7D%24%28aq%29%20%2B%20%24%5E%7B-%7D%24%28aq%29%3B%20%24K_%7B%5Ctext%7Bsp%7D%7D%24%20%3D%20%5BM%24%5E%7B%2B%7D%24%5D%5BX%24%5E%7B-%7D%24%5D%5C%5C%5C%5C%5Ctext%7B%24K_%7B%5Ctext%7Bsp%7D%7D%24%20gives%20us%20information%20on%7D%5C%5C%5C%5C%5Cboxed%7B%5Ctextbf%7B%20the%20equilibrium%20between%20the%20solid%20and%20its%20ions%20in%20solution%7D%7D)
It tells us nothing about the amount of precipitate that will form or the temperature at which the equilibrium occurs.
Answer:
<h2><em><u>MASS</u></em></h2>
Explanation:
Inertia increases as an object's <u>Mass</u> increases.
Answer:

Explanation:
Hello there!
In this case, according to the given combustion reaction of octane, it is possible for us to perform the stoichiometric method in order to calculate the mass of octane that is required to consume 300.0 g of oxygen by considering the 2:25 mole ratio, and the molar masses of 114.22 g/mol and 32.00 g/mol respectively:

Regards!
The answer is (4) synthesis. Synthesis reaction means that two or more reactants combine directly to one production. Substitution or single replacement means that one element of a compound is replaced by another element. Double replacement means that two ionic reactants exchange ions to form two new productions.
Answer:
The correct option is: Carbonate ion < Carbon dioxide < Carbon monoxide
Explanation:
Bond energy is defined as the average energy needed to break a chemical covalent bond and signifies the strength of chemical covalent bond.
The bond strength of a covalent bond depends upon the <u>bond length and the bond order.</u>
Carbon monoxide molecule (CO) has two covalent bond and one dative bond. Bond order 2.6
Carbon dioxide (CO₂) has two carbon-oxygen (C-O) double bonds of equal length. Bond order 2.0
Carbonate ion (CO₃²⁻) has three C-O partial double bonds. Bond order 1.5
Also, the bond length is <u>inversely proportional to the bond order and bond strength.</u>
Therefore, <u>order of C-O bond length:</u> Carbon monoxide<Carbon dioxide<Carbonate ion
<u>Order of C-O bond order</u>: Carbonate ion<Carbon dioxide<Carbon monoxide
<u>Order of C-O bond strength or energy</u><u>: Carbonate ion<Carbon dioxide<Carbon monoxide</u>