For water you could add oil..ex: cooking oil separates form water because water is heavier than oil.
For Magnesium Sulfate you could add Sodium Carbonate..ex: Sodium Carb reacts to Mg Sulfate adding a darker hue to the liquid and adding a lot of bubbles.
For Sodium Carbonate you could add Sulfuric Acid..ex: Sulfuric Acid would add a reaction to the Sodium Carb that would resembling water boiling
H0P3 It H3LPS :)
Answer:
Δx(m.Δv)=h/4π
here ,
Δv = uncertainty in velocity
10−11×10−27×Δv=6.626×10−34/4×22/7
=5.25×103ms−1
Krafla Volcano in Iceland,
Answer:
1. Potassium, K.
2. Calcium, Ca.
3. Gallium, Ga.
4. Carbon, C.
5. Bromine, Br.
6. Barium, Ba.
7. Silicon, Si.
8. Gold, Au.
Explanation:
Atomic radius can be defined as a measure of the size (distance) of the atom of a chemical element such as hydrogen, oxygen, carbon, nitrogen etc, typically from the nucleus to the valence electrons. The atomic radius of a chemical element decreases across the periodic table, typically from alkali metals (group one elements such as hydrogen, lithium and sodium) to noble gases (group eight elements such as argon, helium and neon). Also, the atomic radius of a chemical element increases down each group of the periodic table, typically from top to bottom (column).
Additionally, the unit of measurement of the atomic radius of chemical elements is picometers (1 pm = 10 - 12 m).
1. Li or K: the atomic radius of lithium is 167 pm while that of potassium is 243 pm.
2. Ca or Ni: the atomic radius of calcium is 194 pm while that of nickel is 149 pm.
3. Ga or B: the atomic radius of gallium is 136 pm while that of boron is 87 pm.
4. O or C: the atomic radius of oxygen is 48 pm while that of carbon is 67 pm.
5. Cl or Br: the atomic radius of chlorine is 79 pm while that of bromine is 94 pm.
6. Be or Ba: the atomic radius of berryllium is 112 pm while that of barium is 253 pm.
7. Si or S: the atomic radius of silicon is 111 pm while that of sulphur is 88 pm.
8. Fe or Au: the atomic radius of iron is 156 pm while that of gold is 174 pm.
Answer: v=d−at
Explanation: I don't know if this will help